File size: 3,837 Bytes
301614f
 
 
9035153
 
 
604b59c
 
 
 
6c36800
1ea407d
1288197
2cd4e0a
7ab093b
 
058d9a5
 
2cd4e0a
 
604b59c
b0a8958
7ab093b
b0a8958
058d9a5
d121146
 
9035153
 
 
 
 
 
 
 
7ab093b
9035153
 
 
03e01d3
9035153
03e01d3
9035153
d99a408
9035153
 
725d485
2a5a407
d121146
b0a8958
 
725d485
7ab093b
 
 
f80ac06
9035153
dffeb2d
911a8be
5573a68
911a8be
868e2fc
b0a8958
 
 
986cfd0
b0a8958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4627abd
725d485
911a8be
 
5573a68
911a8be
 
 
 
2024184
dffeb2d
 
e9d0a51
59b084c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dffeb2d
59b084c
 
 
 
 
 
 
 
23d4171
7f9bf9b
59b084c
 
 
7c1d20d
fc4d061
e554b8b
7ab093b
71db1e4
fc4d061
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import chromadb
import chromadb.config
from chromadb.config import Settings
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import uuid
from sentence_transformers import SentenceTransformer
import os

#
model_name = 'google/flan-t5-base'
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name) 


ST_name = 'sentence-transformers/sentence-t5-base'
st_model = SentenceTransformer(ST_name)

client = chromadb.Client()
collection = client.create_collection("my_database") 


def get_context(query_text):
    
    query_emb = st_model.encode(query_text)
    query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
    context = query_response['documents'][0][0]
    context = context.replace('\n', ' ').replace('  ', ' ')
    return context

def local_query(query, context):
    t5query = """Using the available context, please answer the question. 
    If you are not sure please say I don't know.
    Context: {}
    Question: {}
    """.format(context, query)

    inputs = tokenizer(t5query, return_tensors="pt")

    outputs = model.generate(**inputs, max_new_tokens=20)
 
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)


   
   

def run_query(btn, history, query):

    context = get_context(query) 
    result = local_query(query, context) 
    history.append((query, str(result[0]))) 
    return  history, ""



def upload_pdf(file):
    try:
        if file is not None: 

            global collection
            
            file_name = file.name 
   
            loader = PDFMinerLoader(file_name)
            doc = loader.load()
        
            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
            texts = text_splitter.split_documents(doc)
        
            texts = [i.page_content for i in texts]
        
            doc_emb = st_model.encode(texts)
            doc_emb = doc_emb.tolist()
        
            ids = [str(uuid.uuid1()) for _ in doc_emb]
        
            
            collection.add(
                embeddings=doc_emb,
                documents=texts,
                ids=ids
            )

    
            return 'Successfully uploaded!'
        else:
            return "No file uploaded."

    except Exception as e:
        return f"An error occurred: {e}"


with gr.Blocks() as demo:  
    
    btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
    output = gr.Textbox(label="Output Box",  style={"height": "100px", "margin-top": "20px"})
    chatbot = gr.Chatbot(height=240)
    
    with gr.Row():
        with gr.Column(scale=0.70):
            txt = gr.Textbox(
                show_label=False,
                placeholder="Enter a question",
            ) 

    
 
# with gr.Blocks() as demo:  
    
#     btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
#     output = gr.Textbox(label="Output Box",  style={"height": "100px", "margin-top": "20px"})
#     chatbot = gr.Chatbot(height=240, placeholder="Ask me anything...", style={"margin-top": "20px"})
    
#      with gr.Row(style={"margin-top": "20px"}):
#             with gr.Column(scale=0.70):
#                 # Styled Textbox
#                 txt = gr.Textbox(
#                     show_label=False,
#                     placeholder="Enter a question",
#                     style={"width": "100%", "height": "100px", "margin-bottom": "10px"}
#                 ) 

 
#     # Event handler for uploading a PDF
#     btn.upload(fn=upload_pdf, inputs=[btn], outputs=[output])
#     txt.submit(run_query, [btn, chatbot, txt], [chatbot, txt])


gr.close_all()

demo.queue().launch()