import gradio as gr from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader from langchain.text_splitter import CharacterTextSplitter import chromadb import chromadb.config from chromadb.config import Settings from transformers import T5ForConditionalGeneration, AutoTokenizer import torch import gradio as gr import uuid from sentence_transformers import SentenceTransformer model_name = 'google/flan-t5-base' model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload") tokenizer = AutoTokenizer.from_pretrained(model_name) print('flan read') ST_name = 'sentence-transformers/sentence-t5-base' st_model = SentenceTransformer(ST_name) print('sentence read') def get_context(query_text): query_emb = st_model.encode(query_text) query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4) context = query_response['documents'][0][0] context = context.replace('\n', ' ').replace(' ', ' ') return context def local_query(query, context): t5query = """Using the available context, please answer the question. If you aren't sure please say i don't know. Context: {} Question: {} """.format(context, query) inputs = tokenizer(t5query, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) return tokenizer.batch_decode(outputs, skip_special_tokens=True) def run_query(query): context = get_context(query) result = local_query(query, context) return result def upload_pdf(file): # Save the uploaded file file_name = file.name pdf_filename = os.path.basename(file_path) # Load a document loader = PDFMinerLoader(pdf_filename) doc = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(doc) texts = [i.page_content for i in texts] doc_emb = st_model.encode(texts) doc_emb = doc_emb.tolist() ids = [str(uuid.uuid1()) for _ in doc_emb] client = chromadb.Client() collection = client.create_collection("test_db") collection.add( embeddings=doc_emb, documents=texts, ids=ids ) return 'hello' iface = gr.Interface( fn=upload_pdf, inputs="file", outputs="text", title="PDF File Uploader", description="Upload a PDF file and get its filename.", ) iface.launch()