Update Negativ/PythonCode/positive_reframe.py
Browse files
Negativ/PythonCode/positive_reframe.py
CHANGED
@@ -1,65 +1,65 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoTokenizer, DebertaForSequenceClassification
|
3 |
-
|
4 |
-
sentence = "I really love that you suck so bad at this game, you are the worst teammate and i hope you die in a fire"
|
5 |
-
|
6 |
-
# Define the model architecture
|
7 |
-
num_labels = 2 # Assuming a three-class classification task
|
8 |
-
|
9 |
-
# Load the tokenizer
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base")
|
11 |
-
|
12 |
-
# Initialize the model architecture
|
13 |
-
model = DebertaForSequenceClassification.from_pretrained("microsoft/deberta-base", num_labels=num_labels)
|
14 |
-
|
15 |
-
# Load the saved state dictionary
|
16 |
-
state_dict = torch.load('
|
17 |
-
|
18 |
-
# Load the state dictionary into the model
|
19 |
-
model.load_state_dict(state_dict)
|
20 |
-
|
21 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
-
|
23 |
-
# Ensure the model is set up with the correct number of labels
|
24 |
-
assert model.config.num_labels == num_labels, "Model labels mismatch!"
|
25 |
-
|
26 |
-
def predict(sentence):
|
27 |
-
# Tokenize the input sentence
|
28 |
-
inputs = tokenizer(sentence, return_tensors="pt", padding='max_length', truncation=True)
|
29 |
-
|
30 |
-
print(inputs)
|
31 |
-
|
32 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
33 |
-
|
34 |
-
# Move the model to evaluation mode
|
35 |
-
model.eval()
|
36 |
-
|
37 |
-
# Perform prediction
|
38 |
-
with torch.no_grad():
|
39 |
-
outputs = model(**inputs)
|
40 |
-
|
41 |
-
print(outputs)
|
42 |
-
|
43 |
-
logits = outputs.logits
|
44 |
-
probabilities = torch.softmax(logits, dim=1)
|
45 |
-
|
46 |
-
print(f"Logits: {logits}")
|
47 |
-
print(f"Probabilities: {probabilities}")
|
48 |
-
|
49 |
-
highest_logit, prediction = torch.max(logits, dim=-1)
|
50 |
-
|
51 |
-
print(f"Highest Logit: {highest_logit.item()}, Predicted Class: {prediction.item()}")
|
52 |
-
|
53 |
-
# Interpret the result
|
54 |
-
return "Toxic" if prediction == 1 else "Non-toxic"
|
55 |
-
|
56 |
-
def is_toxic(sentence):
|
57 |
-
|
58 |
-
result = predict(sentence)
|
59 |
-
|
60 |
-
print(f"Given Sentence: {sentence}", f"\tPrediction: {result}")
|
61 |
-
|
62 |
-
if result == "Toxic":
|
63 |
-
return True
|
64 |
-
else:
|
65 |
return False
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, DebertaForSequenceClassification
|
3 |
+
|
4 |
+
sentence = "I really love that you suck so bad at this game, you are the worst teammate and i hope you die in a fire"
|
5 |
+
|
6 |
+
# Define the model architecture
|
7 |
+
num_labels = 2 # Assuming a three-class classification task
|
8 |
+
|
9 |
+
# Load the tokenizer
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base")
|
11 |
+
|
12 |
+
# Initialize the model architecture
|
13 |
+
model = DebertaForSequenceClassification.from_pretrained("microsoft/deberta-base", num_labels=num_labels)
|
14 |
+
|
15 |
+
# Load the saved state dictionary
|
16 |
+
state_dict = torch.load('./toxic_deberta_tuned.pth')
|
17 |
+
|
18 |
+
# Load the state dictionary into the model
|
19 |
+
model.load_state_dict(state_dict)
|
20 |
+
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
# Ensure the model is set up with the correct number of labels
|
24 |
+
assert model.config.num_labels == num_labels, "Model labels mismatch!"
|
25 |
+
|
26 |
+
def predict(sentence):
|
27 |
+
# Tokenize the input sentence
|
28 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding='max_length', truncation=True)
|
29 |
+
|
30 |
+
print(inputs)
|
31 |
+
|
32 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
33 |
+
|
34 |
+
# Move the model to evaluation mode
|
35 |
+
model.eval()
|
36 |
+
|
37 |
+
# Perform prediction
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
|
41 |
+
print(outputs)
|
42 |
+
|
43 |
+
logits = outputs.logits
|
44 |
+
probabilities = torch.softmax(logits, dim=1)
|
45 |
+
|
46 |
+
print(f"Logits: {logits}")
|
47 |
+
print(f"Probabilities: {probabilities}")
|
48 |
+
|
49 |
+
highest_logit, prediction = torch.max(logits, dim=-1)
|
50 |
+
|
51 |
+
print(f"Highest Logit: {highest_logit.item()}, Predicted Class: {prediction.item()}")
|
52 |
+
|
53 |
+
# Interpret the result
|
54 |
+
return "Toxic" if prediction == 1 else "Non-toxic"
|
55 |
+
|
56 |
+
def is_toxic(sentence):
|
57 |
+
|
58 |
+
result = predict(sentence)
|
59 |
+
|
60 |
+
print(f"Given Sentence: {sentence}", f"\tPrediction: {result}")
|
61 |
+
|
62 |
+
if result == "Toxic":
|
63 |
+
return True
|
64 |
+
else:
|
65 |
return False
|