File size: 6,611 Bytes
de48798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3abff73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de48798
0aa1927
de48798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import requests 
import torch
import transformers
import einops
###
from typing import Any, Dict, Tuple
import warnings
import datetime
import os
from threading import Event, Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer


import config

INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
END_KEY = "### End"
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
    intro=INTRO_BLURB,
    instruction_key=INSTRUCTION_KEY,
    instruction="{instruction}",
    response_key=RESPONSE_KEY,
)


#class InstructionTextGenerationPipeline:
#    def __init__(
#        self,
#        model_name,
#        torch_dtype=torch.bfloat16,
#        trust_remote_code=True,
#        use_auth_token=None,
#    ) -> None:
#        self.model = AutoModelForCausalLM.from_pretrained(
#            model_name,
#            torch_dtype=torch_dtype,
#            trust_remote_code=trust_remote_code,
#            use_auth_token=use_auth_token,
#        )
#
#        tokenizer = AutoTokenizer.from_pretrained(
#            model_name,
#            trust_remote_code=trust_remote_code,
#            use_auth_token=use_auth_token,
#        )
#        if tokenizer.pad_token_id is None:
#            warnings.warn(
#                "pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id."
#            )
#            tokenizer.pad_token = tokenizer.eos_token
#        tokenizer.padding_side = "left"
#        self.tokenizer = tokenizer
#
#        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#        self.model.eval()
#        self.model.to(device=device, dtype=torch_dtype)
#
#        self.generate_kwargs = {
#            "temperature": 0.5,
#            "top_p": 0.92,
#            "top_k": 0,
#            "max_new_tokens": 512,
#            "use_cache": True,
#            "do_sample": True,
#            "eos_token_id": self.tokenizer.eos_token_id,
#            "pad_token_id": self.tokenizer.pad_token_id,
#            "repetition_penalty": 1.1,  # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
#        }
#
#    def format_instruction(self, instruction):
#        return PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
#
#    def __call__(
#        self, instruction: str, **generate_kwargs: Dict[str, Any]
#    ) -> Tuple[str, str, float]:
#        s = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
#        input_ids = self.tokenizer(s, return_tensors="pt").input_ids
#        input_ids = input_ids.to(self.model.device)
#        gkw = {**self.generate_kwargs, **generate_kwargs}
#        with torch.no_grad():
#            output_ids = self.model.generate(input_ids, **gkw)
#        # Slice the output_ids tensor to get only new tokens
#        new_tokens = output_ids[0, len(input_ids[0]) :]
#        output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
#        return output_text
##
from InstructionTextGenerationPipeline    import *
from timeit import default_timer as timer
import time
import datetime
from datetime import datetime

import json
# create some interactive controls

import sys
import os
import os.path as osp
import pprint
pp = pprint.PrettyPrinter(indent=4)

LIBRARY_PATH = "/home/ec2-user/workspace/Notebooks/lib"
module_path = os.path.abspath(os.path.join(LIBRARY_PATH))
if module_path not in sys.path:
    sys.path.append(module_path)
print (f"sys.path : {sys.path}") 



def complete(state="complete"):   
    print(f"\nCell {state} @ {(datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))}")
    
complete(state='imports done')

complete(state="start generate")
generate = InstructionTextGenerationPipeline(
    "mosaicml/mpt-7b-instruct",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
stop_token_ids = generate.tokenizer.convert_tokens_to_ids(["<|endoftext|>"])
complete(state="Model generated")


# Define a custom stopping criteria
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        for stop_id in stop_token_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

def process_stream(instruction, temperature, top_p, top_k, max_new_tokens):
    # Tokenize the input
    input_ids = generate.tokenizer(
        generate.format_instruction(instruction), return_tensors="pt"
    ).input_ids
    input_ids = input_ids.to(generate.model.device)

    # Initialize the streamer and stopping criteria
    streamer = TextIteratorStreamer(
        generate.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )
    stop = StopOnTokens()

    if temperature < 0.1:
        temperature = 0.0
        do_sample = False
    else:
        do_sample = True

    gkw = {
        **generate.generate_kwargs,
        **{
            "input_ids": input_ids,
            "max_new_tokens": max_new_tokens,
            "temperature": temperature,
            "do_sample": do_sample,
            "top_p": top_p,
            "top_k": top_k,
            "streamer": streamer,
            "stopping_criteria": StoppingCriteriaList([stop]),
        },
    }

    response = ''
    

    def generate_and_signal_complete():
        generate.model.generate(**gkw)

    t1 = Thread(target=generate_and_signal_complete)
    t1.start()

    for new_text in streamer:
        response += new_text
   
    return response

gr.close_all()

def tester(uPrompt, max_new_tokens, temperature, top_k, top_p):
    salutation = uPrompt
    response = process_stream(uPrompt, temperature, top_p, top_k, max_new_tokens)
    results = f"{salutation} max_new_tokens{max_new_tokens}; temperature{temperature}; top_k{top_k}; top_p{top_p};  "
    
    return response
config.init_device="meta"
demo = gr.Interface(
    fn=tester,
    inputs=[gr.Textbox(label="Prompt",info="Prompt",lines=3,value="Provide Prompt"),  
            gr.Slider(256, 3072,value=1024, step=256, label="Tokens" ),
            gr.Slider(0.0, 1.0, value=0.1, step=0.1, label='temperature:'),
            gr.Slider(0, 1,  value=0, step=1, label='top_k:'),
            gr.Slider(0.0, 1.0, value=0.0, step=0.05, label='top_p:')
           
           ],
    outputs=["text"],
)
demo.launch(share=True,
    server_name="0.0.0.0",
    server_port=8081
            )