Spaces:
Runtime error
Runtime error
File size: 6,611 Bytes
de48798 3abff73 de48798 0aa1927 de48798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import requests
import torch
import transformers
import einops
###
from typing import Any, Dict, Tuple
import warnings
import datetime
import os
from threading import Event, Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import config
INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
END_KEY = "### End"
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
instruction="{instruction}",
response_key=RESPONSE_KEY,
)
#class InstructionTextGenerationPipeline:
# def __init__(
# self,
# model_name,
# torch_dtype=torch.bfloat16,
# trust_remote_code=True,
# use_auth_token=None,
# ) -> None:
# self.model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch_dtype,
# trust_remote_code=trust_remote_code,
# use_auth_token=use_auth_token,
# )
#
# tokenizer = AutoTokenizer.from_pretrained(
# model_name,
# trust_remote_code=trust_remote_code,
# use_auth_token=use_auth_token,
# )
# if tokenizer.pad_token_id is None:
# warnings.warn(
# "pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id."
# )
# tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = "left"
# self.tokenizer = tokenizer
#
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# self.model.eval()
# self.model.to(device=device, dtype=torch_dtype)
#
# self.generate_kwargs = {
# "temperature": 0.5,
# "top_p": 0.92,
# "top_k": 0,
# "max_new_tokens": 512,
# "use_cache": True,
# "do_sample": True,
# "eos_token_id": self.tokenizer.eos_token_id,
# "pad_token_id": self.tokenizer.pad_token_id,
# "repetition_penalty": 1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
# }
#
# def format_instruction(self, instruction):
# return PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
#
# def __call__(
# self, instruction: str, **generate_kwargs: Dict[str, Any]
# ) -> Tuple[str, str, float]:
# s = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
# input_ids = self.tokenizer(s, return_tensors="pt").input_ids
# input_ids = input_ids.to(self.model.device)
# gkw = {**self.generate_kwargs, **generate_kwargs}
# with torch.no_grad():
# output_ids = self.model.generate(input_ids, **gkw)
# # Slice the output_ids tensor to get only new tokens
# new_tokens = output_ids[0, len(input_ids[0]) :]
# output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
# return output_text
##
from InstructionTextGenerationPipeline import *
from timeit import default_timer as timer
import time
import datetime
from datetime import datetime
import json
# create some interactive controls
import sys
import os
import os.path as osp
import pprint
pp = pprint.PrettyPrinter(indent=4)
LIBRARY_PATH = "/home/ec2-user/workspace/Notebooks/lib"
module_path = os.path.abspath(os.path.join(LIBRARY_PATH))
if module_path not in sys.path:
sys.path.append(module_path)
print (f"sys.path : {sys.path}")
def complete(state="complete"):
print(f"\nCell {state} @ {(datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))}")
complete(state='imports done')
complete(state="start generate")
generate = InstructionTextGenerationPipeline(
"mosaicml/mpt-7b-instruct",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
stop_token_ids = generate.tokenizer.convert_tokens_to_ids(["<|endoftext|>"])
complete(state="Model generated")
# Define a custom stopping criteria
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def process_stream(instruction, temperature, top_p, top_k, max_new_tokens):
# Tokenize the input
input_ids = generate.tokenizer(
generate.format_instruction(instruction), return_tensors="pt"
).input_ids
input_ids = input_ids.to(generate.model.device)
# Initialize the streamer and stopping criteria
streamer = TextIteratorStreamer(
generate.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
stop = StopOnTokens()
if temperature < 0.1:
temperature = 0.0
do_sample = False
else:
do_sample = True
gkw = {
**generate.generate_kwargs,
**{
"input_ids": input_ids,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"do_sample": do_sample,
"top_p": top_p,
"top_k": top_k,
"streamer": streamer,
"stopping_criteria": StoppingCriteriaList([stop]),
},
}
response = ''
def generate_and_signal_complete():
generate.model.generate(**gkw)
t1 = Thread(target=generate_and_signal_complete)
t1.start()
for new_text in streamer:
response += new_text
return response
gr.close_all()
def tester(uPrompt, max_new_tokens, temperature, top_k, top_p):
salutation = uPrompt
response = process_stream(uPrompt, temperature, top_p, top_k, max_new_tokens)
results = f"{salutation} max_new_tokens{max_new_tokens}; temperature{temperature}; top_k{top_k}; top_p{top_p}; "
return response
config.init_device="meta"
demo = gr.Interface(
fn=tester,
inputs=[gr.Textbox(label="Prompt",info="Prompt",lines=3,value="Provide Prompt"),
gr.Slider(256, 3072,value=1024, step=256, label="Tokens" ),
gr.Slider(0.0, 1.0, value=0.1, step=0.1, label='temperature:'),
gr.Slider(0, 1, value=0, step=1, label='top_k:'),
gr.Slider(0.0, 1.0, value=0.0, step=0.05, label='top_p:')
],
outputs=["text"],
)
demo.launch(share=True,
server_name="0.0.0.0",
server_port=8081
)
|