Spaces:
Sleeping
Sleeping
Dan Biagini
commited on
Commit
·
9f50c5e
1
Parent(s):
c0a33cd
add descriptive text for app
Browse files
app.py
CHANGED
@@ -3,11 +3,20 @@ from fastai.vision.all import *
|
|
3 |
from os import listdir
|
4 |
import random
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
learn = load_learner('hockey_model.pkl')
|
7 |
|
8 |
categories = ('Hockey Goalie', 'Hockey Player', "Hockey Referee")
|
9 |
-
image = gr.
|
10 |
-
label = gr.
|
11 |
skater_example = 'assets/skaters/' + random.choice(listdir('assets/skaters'))
|
12 |
ref_example = 'assets/referees/' + random.choice(listdir('assets/referees'))
|
13 |
goalie_example = 'assets/goalies/' + random.choice(listdir('assets/goalies'))
|
@@ -17,5 +26,6 @@ def classify_image(img):
|
|
17 |
return dict(zip(categories, map(float, prob)))
|
18 |
|
19 |
iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, theme=gr.themes.Glass(),
|
20 |
-
examples=[skater_example, ref_example, goalie_example]
|
|
|
21 |
iface.launch(share=False, debug=True)
|
|
|
3 |
from os import listdir
|
4 |
import random
|
5 |
|
6 |
+
title = "Who Am I? (Hockey Edition)"
|
7 |
+
|
8 |
+
desc = """This app uses a 'neural network' (a type of machine learning model) to classify
|
9 |
+
an image as containing a hockey player, a hockey goalie or a hockey referee."""
|
10 |
+
|
11 |
+
art = """I built this model using about 50 hockey related images found on the web and in my own collection. I started with a pretrained `resnet18` model (resnet18 is trained on `imagenet`, a very large dataset with millions of images)
|
12 |
+
and then performed `fine tuning` of this using python and the `fast.ai` library.
|
13 |
+
The total training time for this was about 5 minutes on a basic GPU. It's impressive how accurate this quick / small model can be!"""
|
14 |
+
|
15 |
learn = load_learner('hockey_model.pkl')
|
16 |
|
17 |
categories = ('Hockey Goalie', 'Hockey Player', "Hockey Referee")
|
18 |
+
image = gr.Image(shape=(192, 192))
|
19 |
+
label = gr.Label()
|
20 |
skater_example = 'assets/skaters/' + random.choice(listdir('assets/skaters'))
|
21 |
ref_example = 'assets/referees/' + random.choice(listdir('assets/referees'))
|
22 |
goalie_example = 'assets/goalies/' + random.choice(listdir('assets/goalies'))
|
|
|
26 |
return dict(zip(categories, map(float, prob)))
|
27 |
|
28 |
iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, theme=gr.themes.Glass(),
|
29 |
+
examples=[skater_example, ref_example, goalie_example], title=title,
|
30 |
+
description=desc, article=art)
|
31 |
iface.launch(share=False, debug=True)
|