import gradio as gr from fastai.vision.all import * from os import listdir import random learn = load_learner('hockey_model.pkl') categories = ('Hockey Goalie', 'Hockey Player', "Hockey Referee") image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() skater_example = 'assets/skaters/' + random.choice(listdir('assets/skaters')) ref_example = 'assets/referees/' + random.choice(listdir('assets/referees')) goalie_example = 'assets/goalies/' + random.choice(listdir('assets/goalies')) def classify_image(img): pred,idx,prob = learn.predict(img) return dict(zip(categories, map(float, prob))) iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=[skater_example, ref_example, goalie_example]) iface.launch(share=True, debug=True)