File size: 10,256 Bytes
52d88a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from datetime import datetime
import json
import os
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objects as go

# Top down page rendering 
st.set_page_config(page_title='Hockey Breeds v3 - Pressure Meter', layout="wide",
                   page_icon=":frame_with_picture:")

st.title('Hockey Breeds v3 - Pressure Meter')
intro = '''Version 3 of Hockey Breeds introduces a new feature: the **Pressure Meter**.  Pressure is a term used in hockey to describe the buildup of offensive momuntum  which often leads to goals.

The **Pressure Meter** builds on a number of major enhancements to the Top-Shelf AI platform:
1. Improved and expanded data set and improved model
1. Parallelized processing pipeline for processing input video and generating output metrics in *real time*
1. Analysis and metrics include:
    * Team jersey color determination
    * Player team assignments
    * Skater speeds and accelerations
    * Player positions relative to nearest goalie & net
    * Improved puck tracking and interpolation
    * Game play state analysis (stoppage vs live play)
'''
st.markdown(intro)

st.subheader('Pressure Meter Visualization')

# get  the data file location   
data_location = st.text_input('Enter the location of the stream analytics metadata file', 
                              value='https://storage.googleapis.com/topshelf-clients/pressure-meter/2025-02-09/22809/stream_metadata.json')
metadata = None
stream_base_url = None
if data_location:
    # should be an http link
    if not data_location.startswith('http'):
        st.error('Data location must be an http link')
    else:
        # download the data from the link
        if data_location.endswith('/'):
            data_location = data_location + 'stream_metadata.json'
        data = requests.get(data_location)
        # load the data from the json file
        metadata = json.loads(data.text)

        # determine the base url for the stream
        stream_base_url = data_location.split('stream_metadata.json')[0]


# load the data from the csv files
if metadata:
    # get the data from the csv files
    files = metadata['output_files']

    # get the base timestamp for the stream
    base_timestamp = datetime.fromisoformat(metadata['video_start_time'])

    # Create an empty list to store individual dataframes
    dfs = []
    
    for ts, file in files.items():
        try:
            response = requests.get(stream_base_url + file)
            response.raise_for_status()
            
            data_string = StringIO(response.text)
            df = pd.read_csv(data_string)
            
            ts_delta = datetime.fromtimestamp(int(ts)).astimezone(base_timestamp.tzinfo) - base_timestamp
            df['second_offset'] = df['second_offset'] + ts_delta.total_seconds()
            
            dfs.append(df)
            
        except Exception as e:
            st.error(f"Failed to load data for timestamp {ts}, file: {file}")
            st.error(f"Error: {str(e)}")
            continue
    
    # Log the number of files processed
    st.info(f"Successfully loaded {len(dfs)} out of {len(files)} files")
    
    # Concatenate all dataframes and sort by the second_offset
    combined_df = pd.concat(dfs, ignore_index=True)
    combined_df = combined_df.sort_values('second_offset')
    
    # Check for gaps in the sequence
    expected_range = set(range(int(combined_df['second_offset'].min()), 
                             int(combined_df['second_offset'].max()) + 1))
    actual_range = set(combined_df['second_offset'].astype(int))
    missing_seconds = sorted(expected_range - actual_range)
    
    if missing_seconds:
        st.warning("Found gaps in the data sequence:")
        # Group consecutive missing seconds into ranges for cleaner output
        gaps = []
        start = missing_seconds[0]
        prev = start
        for curr in missing_seconds[1:] + [None]:
            if curr != prev + 1:
                if start == prev:
                    gaps.append(f"{start}")
                else:
                    gaps.append(f"{start}-{prev}")
                start = curr
            prev = curr
        
        st.warning(f"Missing seconds: {', '.join(gaps)}")

    # Calculate cumulative counts and ratios - only count actual pressure values
    combined_df['team1_cumulative'] = (combined_df['pressure_balance'] > 0).astype(int).cumsum()
    combined_df['team2_cumulative'] = (combined_df['pressure_balance'] < 0).astype(int).cumsum()
    combined_df['total_cumulative'] = combined_df['team1_cumulative'] + combined_df['team2_cumulative']
    
    # Avoid division by zero by using where
    combined_df['team1_pressure_ratio'] = (combined_df['team1_cumulative'] / 
                                         combined_df['total_cumulative'].where(combined_df['total_cumulative'] > 0, 1))
    combined_df['team2_pressure_ratio'] = (combined_df['team2_cumulative'] / 
                                         combined_df['total_cumulative'].where(combined_df['total_cumulative'] > 0, 1))
    
    # Calculate the ratio difference for the balance visualization
    combined_df['pressure_ratio_diff'] = combined_df['team1_pressure_ratio'] - combined_df['team2_pressure_ratio']

    # Add pressure balance visualization using the ratio difference
    st.subheader("Pressure Waves")
    balance_df = pd.DataFrame({
        'second_offset': combined_df['second_offset'],
        'pressure_ratio_diff': combined_df['pressure_ratio_diff']
    })
    
    # Get team colors from metadata and parse them
    def parse_rgb(color_str):
        # Extract numbers from format 'rgb(r,g,b)'
        r, g, b = map(int, color_str.strip('rgb()').split(','))
        return r, g, b

    team1_color = metadata.get('team1_color', 'rgb(54, 162, 235)')  # default blue if not found
    team2_color = metadata.get('team2_color', 'rgb(255, 99, 132)')  # default red if not found
    
    # Parse RGB values
    team1_rgb = parse_rgb(team1_color)
    team2_rgb = parse_rgb(team2_color)
    
    fig = go.Figure()
    
    # Add positive values with team1 color
    fig.add_trace(
        go.Scatter(
            x=combined_df['second_offset'],
            y=combined_df['pressure_ratio_diff'].clip(lower=0),
            fill='tozeroy',
            fillcolor=f'rgba{(*team1_rgb, 0.2)}',
            line=dict(
                color=team1_color,
                shape='hv'
            ),
            name='Team 1 Dominant',
            hovertemplate='Time: %{x:.1f}s<br>Dominance: %{y:.2f}<br>Team 1<extra></extra>',
            hoveron='points+fills'
        )
    )
    
    # Add negative values with team2 color
    fig.add_trace(
        go.Scatter(
            x=combined_df['second_offset'],
            y=combined_df['pressure_ratio_diff'].clip(upper=0),
            fill='tozeroy',
            fillcolor=f'rgba{(*team2_rgb, 0.2)}',
            line=dict(
                color=team2_color,
                shape='hv'
            ),
            name='Team 2 Dominant',
            hovertemplate='Time: %{x:.1f}s<br>Dominance: %{y:.2f}<br>Team 2<extra></extra>',
            hoveron='points+fills'
        )
    )

    fig.update_layout(
        yaxis=dict(
            range=[-1, 1],
            zeroline=True,
            zerolinewidth=2,
            zerolinecolor='rgba(0,0,0,0.2)',
            gridcolor='rgba(0,0,0,0.1)',
            title='Team Dominance'
        ),
        xaxis=dict(
            title='Time (seconds)',
            gridcolor='rgba(0,0,0,0.1)'
        ),
        plot_bgcolor='white',
        height=400,
        margin=dict(l=0, r=0, t=20, b=0),
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        )
    )

    st.plotly_chart(fig, use_container_width=True)

    with st.expander("Pressure Data"):
        st.write(combined_df)

    # add details in a sub section with expander
    with st.expander("Pressure Meter Details"):
        st.write("""
        The Pressure Meter is a visualization of the pressure waves in the game.  It is a line chart of the cumulative pressure counts for each team over time.
        """)

        # Create two columns for charts
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Cumulative Pressure Counts")
            st.line_chart(combined_df, x='second_offset', y=['team1_cumulative', 'team2_cumulative'])
        
        with col2:
            st.subheader("Pressure Ratio Over Time")
            st.area_chart(combined_df, 
                        x='second_offset', 
                        y=['team1_pressure_ratio', 'team2_pressure_ratio'])


        # Show current dominance percentage
        current_ratio = combined_df.iloc[-1]['pressure_balance']
        if current_ratio > 0:
            dominant_team = 'Team 1'
            pressure_value = current_ratio
        elif current_ratio < 0:
            dominant_team = 'Team 2'
            pressure_value = abs(current_ratio)
        else:
            dominant_team = 'Neutral'
            pressure_value = 0

        st.metric(
            label="Dominant Team Pressure", 
            value=f"{dominant_team}",
            delta=f"{pressure_value*100:.1f}%"
        )

    # After loading metadata
    st.subheader("Data Files Analysis")
    
    # Analyze the timestamps in the metadata
    timestamps = sorted([int(ts) for ts in files.keys()])
    time_diffs = [timestamps[i+1] - timestamps[i] for i in range(len(timestamps)-1)]
    
    st.info(f"Number of data files: {len(files)}")
    st.info(f"Time range: {datetime.fromtimestamp(timestamps[0])} to {datetime.fromtimestamp(timestamps[-1])}")
    st.info(f"Time differences between files: {set(time_diffs)} seconds")
    
    # Show the actual files and timestamps
    with st.expander("Stream Metadata Details"):
        st.write(metadata)
        # Log the data range
        st.write(f"Data range: {combined_df['second_offset'].min():.1f}s to {combined_df['second_offset'].max():.1f}s")
        st.write(f"Total rows: {len(combined_df)}")

        for ts in sorted(files.keys()):
            st.text(f"Timestamp: {datetime.fromtimestamp(int(ts))} - File: {files[ts]}")