File size: 19,772 Bytes
e5d1ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
{
  "cells": [
    {
      "cell_type": "markdown",
      "id": "def8e46c-7606-4991-9b29-9223ccacd54b",
      "metadata": {
        "id": "def8e46c-7606-4991-9b29-9223ccacd54b"
      },
      "source": [
        "# Project: Deep Learning - Pytorch"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "911a145c-7d01-4210-9699-0e1fef80ff19",
      "metadata": {
        "id": "911a145c-7d01-4210-9699-0e1fef80ff19"
      },
      "source": [
        "**Instructions for Students:**\n",
        "\n",
        "Please carefully follow these steps to complete and submit your project:\n",
        "\n",
        "1. **Make a copy of the Project**: Please make a copy of this project either to your own Google Drive or download locally. Work on the copy of the project. The master project is **Read-Only**, meaning you can edit, but it will not be saved when you close the master project. To avoid total loss of your work, remember to make a copy.\n",
        "\n",
        "2. **Completing the Project**: You are required to work on and complete all tasks in the provided project. Be disciplined and ensure that you thoroughly engage with each task.\n",
        "   \n",
        "3. **Creating a Google Drive Folder**: Each of you must create a new folder on your Google Drive. This will be the repository for all your completed project files, aiding you in keeping your work organized and accessible.\n",
        "   \n",
        "4. **Uploading Completed Project**: Upon completion of your project, make sure to upload all necessary files, involving codes, reports, and related documents into the created Google Drive folder. Save this link in the 'Student Identity' section and also provide it as the last parameter in the `submit` function that has been provided.\n",
        "   \n",
        "5. **Sharing Folder Link**: You're required to share the link to your project Google Drive folder. This is crucial for the submission and evaluation of your project.\n",
        "   \n",
        "6. **Setting Permission to Public**: Please make sure your Google Drive folder is set to public. This allows your instructor to access your solutions and assess your work correctly.\n",
        "\n",
        "Adhering to these procedures will facilitate a smooth project evaluation process for you and the reviewers."
      ]
    },
    {
      "cell_type": "markdown",
      "id": "d3b9e0f7-75d2-476a-9b29-07c1a3800925",
      "metadata": {
        "id": "d3b9e0f7-75d2-476a-9b29-07c1a3800925"
      },
      "source": [
        "## Project Description\n",
        "\n",
        "The Deep Learning Projects are divided into two parts, the first is the Calculations worth 30% and the second one is Pytorch Project worth 70% in this notebook.\n",
        "\n",
        "The two projects will help you gain experience to learn about Deep Learning in detail.\n",
        "\n",
        "In this project, you will use what you learn to create your own Deep Learning model. We'll use a variety of datasets, each with different data types such as images, text, and numerical/categorical data. Your task is to choose one of these datasets and build a deep learning model upon it.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "d333f8fe-3ae6-4060-b597-e9f7d9e37582",
      "metadata": {
        "id": "d333f8fe-3ae6-4060-b597-e9f7d9e37582"
      },
      "source": [
        "## Datasets\n",
        "\n",
        "Choose one from the following datasets for your project:\n",
        "\n",
        "1. **Digits Dataset**: A simplified version of MNIST containing 8x8 images of hand-written digits. [Dataset Link](https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html)\n",
        "2. **Dogs vs. Cats Dataset from Kaggle**: A sizable dataset of 25,000 images with equal representation of dogs and cats. [Dataset Link](https://www.kaggle.com/c/dogs-vs-cats)\n",
        "3. **Breast Cancer Wisconsin (Diagnostic) Dataset**: Computed features from a digitized image of a fine needle aspirate (FNA) of a breast mass. [Dataset Link](https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)\n",
        "4. **Spam Text Message Classification Dataset**: A collection of labeled SMS messages, categorized as \"spam\" or \"ham\". [Dataset Link](https://www.kaggle.com/uciml/sms-spam-collection-dataset)\n",
        "5. **German Credit Risk Dataset**: People's data categorized by various attributes to predict credit risk. [Dataset Link](https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "84fea308-2c09-472c-a5ec-e4ba0900d496",
      "metadata": {
        "id": "84fea308-2c09-472c-a5ec-e4ba0900d496"
      },
      "source": [
        "\n",
        "## Grading Criteria\n",
        "\n",
        "Your work will be evaluated based on both accuracy and loss value:\n",
        "\n",
        "100: The model has an accuracy of more than 80% and a Loss Value of less than 0.2. This model is excellent and demonstrates a strong understanding of the task.\n",
        "\n",
        "90: The model has an accuracy between 70% - 79% and a Loss Value between 0.2 - 0.3. This model is very good, with some room for improvement.\n",
        "\n",
        "80: The model has an accuracy between 60% - 69% and a Loss Value between 0.3 - 0.4. This model is fairly good but needs improvement in balancing accuracy and loss value.\n",
        "\n",
        "70: The model has an accuracy between 50% - 59% and a Loss Value between 0.4 - 0.5. This model is below average and needs significant improvement.\n",
        "\n",
        "60 or below: The model has an accuracy of less than 50% or a Loss Value of more than 0.5, or the student did not submit the accuracy and Loss Value. This model is poor and needs considerable improvement."
      ]
    },
    {
      "cell_type": "markdown",
      "id": "915df21b-3a7e-444a-999d-c830acdbe7f2",
      "metadata": {
        "id": "915df21b-3a7e-444a-999d-c830acdbe7f2"
      },
      "source": [
        "Rmember to make a copy of this notebook in your Google Drive and work in your own copy.\n",
        "\n",
        "Let's start your deep learning journey! Choose your dataset and delve into the project! Happy modeling!"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "8018f21d-d661-4ae4-a50d-9fb66feb291d",
      "metadata": {
        "id": "8018f21d-d661-4ae4-a50d-9fb66feb291d"
      },
      "source": [
        "## Student Identity"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "e0b68327-fc7b-43de-9f16-b058d11d775b",
      "metadata": {
        "id": "e0b68327-fc7b-43de-9f16-b058d11d775b"
      },
      "source": [
        "## Project Structure\n",
        "\n",
        "Your project should be organized into five main sections."
      ]
    },
    {
      "cell_type": "markdown",
      "id": "25ecc459-5019-42d8-84a6-8644cecafef3",
      "metadata": {
        "id": "25ecc459-5019-42d8-84a6-8644cecafef3"
      },
      "source": [
        "### 1. Package and Module Installation\n",
        "\n",
        "First, let's pool all package and module that you'll need in the installation section below."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "62606ca1-5868-4c65-93ef-1d6ee8d8d59a",
      "metadata": {
        "id": "62606ca1-5868-4c65-93ef-1d6ee8d8d59a"
      },
      "outputs": [],
      "source": [
        "# Write any package/module installation that you need\n",
        "# pip install goes here, this helps declutter your output below\n",
        "import pandas as pd\n",
        "import numpy as np\n",
        "from ucimlrepo import fetch_ucirepo \n",
        "import plotly.graph_objects as go\n",
        "from plotly.subplots import make_subplots\n",
        "from sklearn.preprocessing import LabelEncoder\n",
        "from sklearn.model_selection import train_test_split\n",
        "import torch\n",
        "import torch.nn as nn\n",
        "import torch.optim as optim\n",
        "from torch.utils.data import Dataset, DataLoader\n",
        "from sklearn.preprocessing import StandardScaler\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "b0837717-de95-4193-9898-e2f4cadfcfc6",
      "metadata": {
        "id": "b0837717-de95-4193-9898-e2f4cadfcfc6"
      },
      "source": [
        "### 2. Data Loading and Preprocessing\n",
        "\n",
        "Load the chosen dataset and preprocess it for deep learning."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "6458c396",
      "metadata": {},
      "outputs": [],
      "source": [
        "# Fetch dataset from UCI repository based on documentation\n",
        "breast_cancer_wisconsin_diagnostic = fetch_ucirepo(id=17)\n",
        "\n",
        "# Extract features (X) and target labels (y) based on documentation\n",
        "X = breast_cancer_wisconsin_diagnostic.data.features  # Features as pandas DataFrame\n",
        "y = breast_cancer_wisconsin_diagnostic.data.targets  # Target as pandas DataFrame\n",
        "\n",
        "# Combine features and target into a single DataFrame for visualization\n",
        "df = pd.concat([X, y], axis=1)\n",
        "\n",
        "# Display first 5 rows of the full dataset\n",
        "print(df.head())"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "f052beb7",
      "metadata": {},
      "outputs": [],
      "source": [
        "print(df.tail())"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "db941354",
      "metadata": {},
      "outputs": [],
      "source": [
        "df.info()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "cd4056ec",
      "metadata": {},
      "outputs": [],
      "source": [
        "df.describe()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "26e0715f",
      "metadata": {},
      "outputs": [],
      "source": [
        "df.isnull().sum()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "b5512b49",
      "metadata": {},
      "outputs": [],
      "source": [
        "df.shape"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "fa185a09",
      "metadata": {},
      "outputs": [],
      "source": [
        "# Visualize feature distributions in a grid layout\n",
        "features = df.columns[2:]  # Select the feature columns\n",
        "num_features = len(features)\n",
        "num_cols = 3  # Number of columns in the grid\n",
        "num_rows = (num_features + num_cols - 1) // num_cols  # Calculate the number of rows\n",
        "\n",
        "fig = make_subplots(rows=num_rows, cols=num_cols, subplot_titles=features)\n",
        "\n",
        "for i, feature in enumerate(features):\n",
        "    row = i // num_cols + 1\n",
        "    col = i % num_cols + 1\n",
        "    \n",
        "    # Plot the histogram for the current feature\n",
        "    fig.add_trace(go.Histogram(x=df[df['Diagnosis'] == 'M'][feature], name='Malignant', opacity=0.7), row=row, col=col)\n",
        "    fig.add_trace(go.Histogram(x=df[df['Diagnosis'] == 'B'][feature], name='Benign', opacity=0.7), row=row, col=col)\n",
        "    \n",
        "    # Set subplot title\n",
        "    fig.update_xaxes(title_text=feature, row=row, col=col)\n",
        "\n",
        "# Update layout\n",
        "fig.update_layout(showlegend=False, height=2000, width=1500, title_text=\"Feature Distributions\")\n",
        "\n",
        "fig.show()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "20848bd8",
      "metadata": {},
      "outputs": [],
      "source": [
        "# Calculate the correlation matrix\n",
        "cor = df.corr()\n",
        "\n",
        "# Create the heatmap trace\n",
        "heatmap = go.Heatmap(\n",
        "    z=cor.values,\n",
        "    x=cor.columns,\n",
        "    y=cor.columns,\n",
        "    colorscale='RdBu',\n",
        "    colorbar=dict(title='Correlation')\n",
        ")\n",
        "\n",
        "# Create the layout\n",
        "layout = go.Layout(\n",
        "    title='Correlation Matrix',\n",
        "    xaxis=dict(title='Features'),\n",
        "    yaxis=dict(title='Features'),\n",
        ")\n",
        "\n",
        "# Create the figure and add the trace\n",
        "fig = go.Figure(data=[heatmap], layout=layout)\n",
        "\n",
        "# Show the figure\n",
        "fig.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "30ce0c59-0e94-480a-81ae-528e68356a15",
      "metadata": {
        "id": "30ce0c59-0e94-480a-81ae-528e68356a15"
      },
      "source": [
        "### 3. Model Building\n",
        "\n",
        "Define your deep learning model's architecture."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "1aa3c3f7-c6c5-4419-9b25-e8d7a8ec345a",
      "metadata": {
        "id": "1aa3c3f7-c6c5-4419-9b25-e8d7a8ec345a"
      },
      "outputs": [],
      "source": [
        "# Write your code here for Model Building here\n",
        "label_encoder = LabelEncoder()\n",
        "df['Diagnosis'] = label_encoder.fit_transform(df['Diagnosis'])\n",
        "# define your Deep Learning Model here, training is in the next section.\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "cfeaeee7",
      "metadata": {},
      "outputs": [],
      "source": [
        "features = df.drop(columns=['Diagnosis']).values\n",
        "labels = df['Diagnosis'].values\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "c94dbf5d",
      "metadata": {},
      "outputs": [],
      "source": [
        "# Convert the data to PyTorch tensors\n",
        "X_train = torch.tensor(X_train, dtype=torch.float32)\n",
        "X_test = torch.tensor(X_test, dtype=torch.float32)\n",
        "y_train = torch.tensor(y_train, dtype=torch.long)\n",
        "y_test = torch.tensor(y_test, dtype=torch.long)\n",
        "\n",
        "# Define the model architecture in PyTorch\n",
        "class DiseaseClassifier(nn.Module):\n",
        "    def __init__(self, input_dim, hidden_dim, output_dim):\n",
        "        super(DiseaseClassifier, self).__init__()\n",
        "        self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
        "        self.relu = nn.ReLU()\n",
        "        self.fc2 = nn.Linear(hidden_dim, output_dim)\n",
        "        \n",
        "    def forward(self, x):\n",
        "        out = self.fc1(x)\n",
        "        out = self.relu(out)\n",
        "        out = self.fc2(out)\n",
        "        return out\n",
        "\n",
        "# Define the hyperparameters\n",
        "input_dim = X_train.shape[1]\n",
        "hidden_dim = 64\n",
        "output_dim = 2\n",
        "learning_rate = 0.001\n",
        "num_epochs = 10\n",
        "batch_size = 16\n",
        "\n",
        "# Create an instance of the model\n",
        "model = DiseaseClassifier(input_dim, hidden_dim, output_dim)\n",
        "\n",
        "# Define the loss function and optimizer\n",
        "criterion = nn.CrossEntropyLoss()\n",
        "optimizer = optim.Adam(model.parameters(), lr=learning_rate)\n",
        "\n",
        "# Create data loaders for batching\n",
        "train_dataset = torch.utils.data.TensorDataset(X_train, y_train)\n",
        "train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "585b925f-fcf0-4518-81d8-598dba65d646",
      "metadata": {
        "id": "585b925f-fcf0-4518-81d8-598dba65d646"
      },
      "source": [
        "### 4. Model Training\n",
        "\n",
        "Train your model and evaluate its performance using validation data."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "ee33d9bc-2b35-4f78-b5d8-3eb65db1e361",
      "metadata": {
        "id": "ee33d9bc-2b35-4f78-b5d8-3eb65db1e361"
      },
      "outputs": [],
      "source": [
        "# Write your code here for Model Training here\n",
        "#dl_loss_value = 1\n",
        "\n",
        "#define the iteration\n",
        "\n",
        "#create the training loop\n",
        "# Training loop\n",
        "for epoch in range(num_epochs):\n",
        "    running_loss = 0.0\n",
        "    for inputs, labels in train_loader:\n",
        "        # Zero the gradients\n",
        "        optimizer.zero_grad()\n",
        "        \n",
        "        # Forward pass\n",
        "        outputs = model(inputs)\n",
        "        \n",
        "        # Compute the loss\n",
        "        loss = criterion(outputs, labels)\n",
        "        \n",
        "        # Backward pass and optimization\n",
        "        loss.backward()\n",
        "        optimizer.step()\n",
        "        \n",
        "        # Track the loss\n",
        "        running_loss += loss.item()\n",
        "        \n",
        "    # Print the average loss for the epoch\n",
        "    print(f\"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}\")\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "1d391ec9-ca95-4c56-b4f6-fccf8e0be14a",
      "metadata": {
        "id": "1d391ec9-ca95-4c56-b4f6-fccf8e0be14a"
      },
      "source": [
        "### 5. Model Evaluation\n",
        "Evaluate your model's performance on the test data using the grading scheme defined above."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "c8ca8f78-e33c-4552-9f4d-8bed711e661f",
      "metadata": {
        "id": "c8ca8f78-e33c-4552-9f4d-8bed711e661f"
      },
      "outputs": [],
      "source": [
        "# Write your code here for Model Evaluation here\n",
        "# dl_accuracy = 0\n",
        "\n",
        "#define the iteration\n",
        "\n",
        "#create the training loop\n",
        "with torch.no_grad():\n",
        "    model.eval()\n",
        "    outputs = model(X_test)\n",
        "    _, predicted = torch.max(outputs.data, 1)\n",
        "    accuracy = (predicted == y_test).sum().item() / y_test.size(0)\n",
        "\n",
        "print(f\"\\nFinal Test Accuracy: {accuracy * 100:.2f}%\")\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "5d59af48-18c0-4e40-80ff-33a85030b205",
      "metadata": {
        "id": "5d59af48-18c0-4e40-80ff-33a85030b205"
      },
      "source": [
        "## Submission\n",
        "\n",
        "Once you are satisfied with the performance of your model, then you run the code block below to submit your project.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "aa89b9ff-0d31-416a-b3c4-851c725fadf7",
      "metadata": {
        "id": "aa89b9ff-0d31-416a-b3c4-851c725fadf7"
      },
      "source": [
        "## FIN"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.9.6"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 5
}