Spaces:
Sleeping
Sleeping
File size: 19,772 Bytes
e5d1ec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
{
"cells": [
{
"cell_type": "markdown",
"id": "def8e46c-7606-4991-9b29-9223ccacd54b",
"metadata": {
"id": "def8e46c-7606-4991-9b29-9223ccacd54b"
},
"source": [
"# Project: Deep Learning - Pytorch"
]
},
{
"cell_type": "markdown",
"id": "911a145c-7d01-4210-9699-0e1fef80ff19",
"metadata": {
"id": "911a145c-7d01-4210-9699-0e1fef80ff19"
},
"source": [
"**Instructions for Students:**\n",
"\n",
"Please carefully follow these steps to complete and submit your project:\n",
"\n",
"1. **Make a copy of the Project**: Please make a copy of this project either to your own Google Drive or download locally. Work on the copy of the project. The master project is **Read-Only**, meaning you can edit, but it will not be saved when you close the master project. To avoid total loss of your work, remember to make a copy.\n",
"\n",
"2. **Completing the Project**: You are required to work on and complete all tasks in the provided project. Be disciplined and ensure that you thoroughly engage with each task.\n",
" \n",
"3. **Creating a Google Drive Folder**: Each of you must create a new folder on your Google Drive. This will be the repository for all your completed project files, aiding you in keeping your work organized and accessible.\n",
" \n",
"4. **Uploading Completed Project**: Upon completion of your project, make sure to upload all necessary files, involving codes, reports, and related documents into the created Google Drive folder. Save this link in the 'Student Identity' section and also provide it as the last parameter in the `submit` function that has been provided.\n",
" \n",
"5. **Sharing Folder Link**: You're required to share the link to your project Google Drive folder. This is crucial for the submission and evaluation of your project.\n",
" \n",
"6. **Setting Permission to Public**: Please make sure your Google Drive folder is set to public. This allows your instructor to access your solutions and assess your work correctly.\n",
"\n",
"Adhering to these procedures will facilitate a smooth project evaluation process for you and the reviewers."
]
},
{
"cell_type": "markdown",
"id": "d3b9e0f7-75d2-476a-9b29-07c1a3800925",
"metadata": {
"id": "d3b9e0f7-75d2-476a-9b29-07c1a3800925"
},
"source": [
"## Project Description\n",
"\n",
"The Deep Learning Projects are divided into two parts, the first is the Calculations worth 30% and the second one is Pytorch Project worth 70% in this notebook.\n",
"\n",
"The two projects will help you gain experience to learn about Deep Learning in detail.\n",
"\n",
"In this project, you will use what you learn to create your own Deep Learning model. We'll use a variety of datasets, each with different data types such as images, text, and numerical/categorical data. Your task is to choose one of these datasets and build a deep learning model upon it.\n"
]
},
{
"cell_type": "markdown",
"id": "d333f8fe-3ae6-4060-b597-e9f7d9e37582",
"metadata": {
"id": "d333f8fe-3ae6-4060-b597-e9f7d9e37582"
},
"source": [
"## Datasets\n",
"\n",
"Choose one from the following datasets for your project:\n",
"\n",
"1. **Digits Dataset**: A simplified version of MNIST containing 8x8 images of hand-written digits. [Dataset Link](https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html)\n",
"2. **Dogs vs. Cats Dataset from Kaggle**: A sizable dataset of 25,000 images with equal representation of dogs and cats. [Dataset Link](https://www.kaggle.com/c/dogs-vs-cats)\n",
"3. **Breast Cancer Wisconsin (Diagnostic) Dataset**: Computed features from a digitized image of a fine needle aspirate (FNA) of a breast mass. [Dataset Link](https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)\n",
"4. **Spam Text Message Classification Dataset**: A collection of labeled SMS messages, categorized as \"spam\" or \"ham\". [Dataset Link](https://www.kaggle.com/uciml/sms-spam-collection-dataset)\n",
"5. **German Credit Risk Dataset**: People's data categorized by various attributes to predict credit risk. [Dataset Link](https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29)\n"
]
},
{
"cell_type": "markdown",
"id": "84fea308-2c09-472c-a5ec-e4ba0900d496",
"metadata": {
"id": "84fea308-2c09-472c-a5ec-e4ba0900d496"
},
"source": [
"\n",
"## Grading Criteria\n",
"\n",
"Your work will be evaluated based on both accuracy and loss value:\n",
"\n",
"100: The model has an accuracy of more than 80% and a Loss Value of less than 0.2. This model is excellent and demonstrates a strong understanding of the task.\n",
"\n",
"90: The model has an accuracy between 70% - 79% and a Loss Value between 0.2 - 0.3. This model is very good, with some room for improvement.\n",
"\n",
"80: The model has an accuracy between 60% - 69% and a Loss Value between 0.3 - 0.4. This model is fairly good but needs improvement in balancing accuracy and loss value.\n",
"\n",
"70: The model has an accuracy between 50% - 59% and a Loss Value between 0.4 - 0.5. This model is below average and needs significant improvement.\n",
"\n",
"60 or below: The model has an accuracy of less than 50% or a Loss Value of more than 0.5, or the student did not submit the accuracy and Loss Value. This model is poor and needs considerable improvement."
]
},
{
"cell_type": "markdown",
"id": "915df21b-3a7e-444a-999d-c830acdbe7f2",
"metadata": {
"id": "915df21b-3a7e-444a-999d-c830acdbe7f2"
},
"source": [
"Rmember to make a copy of this notebook in your Google Drive and work in your own copy.\n",
"\n",
"Let's start your deep learning journey! Choose your dataset and delve into the project! Happy modeling!"
]
},
{
"cell_type": "markdown",
"id": "8018f21d-d661-4ae4-a50d-9fb66feb291d",
"metadata": {
"id": "8018f21d-d661-4ae4-a50d-9fb66feb291d"
},
"source": [
"## Student Identity"
]
},
{
"cell_type": "markdown",
"id": "e0b68327-fc7b-43de-9f16-b058d11d775b",
"metadata": {
"id": "e0b68327-fc7b-43de-9f16-b058d11d775b"
},
"source": [
"## Project Structure\n",
"\n",
"Your project should be organized into five main sections."
]
},
{
"cell_type": "markdown",
"id": "25ecc459-5019-42d8-84a6-8644cecafef3",
"metadata": {
"id": "25ecc459-5019-42d8-84a6-8644cecafef3"
},
"source": [
"### 1. Package and Module Installation\n",
"\n",
"First, let's pool all package and module that you'll need in the installation section below."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62606ca1-5868-4c65-93ef-1d6ee8d8d59a",
"metadata": {
"id": "62606ca1-5868-4c65-93ef-1d6ee8d8d59a"
},
"outputs": [],
"source": [
"# Write any package/module installation that you need\n",
"# pip install goes here, this helps declutter your output below\n",
"import pandas as pd\n",
"import numpy as np\n",
"from ucimlrepo import fetch_ucirepo \n",
"import plotly.graph_objects as go\n",
"from plotly.subplots import make_subplots\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.model_selection import train_test_split\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from sklearn.preprocessing import StandardScaler\n"
]
},
{
"cell_type": "markdown",
"id": "b0837717-de95-4193-9898-e2f4cadfcfc6",
"metadata": {
"id": "b0837717-de95-4193-9898-e2f4cadfcfc6"
},
"source": [
"### 2. Data Loading and Preprocessing\n",
"\n",
"Load the chosen dataset and preprocess it for deep learning."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6458c396",
"metadata": {},
"outputs": [],
"source": [
"# Fetch dataset from UCI repository based on documentation\n",
"breast_cancer_wisconsin_diagnostic = fetch_ucirepo(id=17)\n",
"\n",
"# Extract features (X) and target labels (y) based on documentation\n",
"X = breast_cancer_wisconsin_diagnostic.data.features # Features as pandas DataFrame\n",
"y = breast_cancer_wisconsin_diagnostic.data.targets # Target as pandas DataFrame\n",
"\n",
"# Combine features and target into a single DataFrame for visualization\n",
"df = pd.concat([X, y], axis=1)\n",
"\n",
"# Display first 5 rows of the full dataset\n",
"print(df.head())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f052beb7",
"metadata": {},
"outputs": [],
"source": [
"print(df.tail())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db941354",
"metadata": {},
"outputs": [],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd4056ec",
"metadata": {},
"outputs": [],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26e0715f",
"metadata": {},
"outputs": [],
"source": [
"df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b5512b49",
"metadata": {},
"outputs": [],
"source": [
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa185a09",
"metadata": {},
"outputs": [],
"source": [
"# Visualize feature distributions in a grid layout\n",
"features = df.columns[2:] # Select the feature columns\n",
"num_features = len(features)\n",
"num_cols = 3 # Number of columns in the grid\n",
"num_rows = (num_features + num_cols - 1) // num_cols # Calculate the number of rows\n",
"\n",
"fig = make_subplots(rows=num_rows, cols=num_cols, subplot_titles=features)\n",
"\n",
"for i, feature in enumerate(features):\n",
" row = i // num_cols + 1\n",
" col = i % num_cols + 1\n",
" \n",
" # Plot the histogram for the current feature\n",
" fig.add_trace(go.Histogram(x=df[df['Diagnosis'] == 'M'][feature], name='Malignant', opacity=0.7), row=row, col=col)\n",
" fig.add_trace(go.Histogram(x=df[df['Diagnosis'] == 'B'][feature], name='Benign', opacity=0.7), row=row, col=col)\n",
" \n",
" # Set subplot title\n",
" fig.update_xaxes(title_text=feature, row=row, col=col)\n",
"\n",
"# Update layout\n",
"fig.update_layout(showlegend=False, height=2000, width=1500, title_text=\"Feature Distributions\")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "20848bd8",
"metadata": {},
"outputs": [],
"source": [
"# Calculate the correlation matrix\n",
"cor = df.corr()\n",
"\n",
"# Create the heatmap trace\n",
"heatmap = go.Heatmap(\n",
" z=cor.values,\n",
" x=cor.columns,\n",
" y=cor.columns,\n",
" colorscale='RdBu',\n",
" colorbar=dict(title='Correlation')\n",
")\n",
"\n",
"# Create the layout\n",
"layout = go.Layout(\n",
" title='Correlation Matrix',\n",
" xaxis=dict(title='Features'),\n",
" yaxis=dict(title='Features'),\n",
")\n",
"\n",
"# Create the figure and add the trace\n",
"fig = go.Figure(data=[heatmap], layout=layout)\n",
"\n",
"# Show the figure\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "30ce0c59-0e94-480a-81ae-528e68356a15",
"metadata": {
"id": "30ce0c59-0e94-480a-81ae-528e68356a15"
},
"source": [
"### 3. Model Building\n",
"\n",
"Define your deep learning model's architecture."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1aa3c3f7-c6c5-4419-9b25-e8d7a8ec345a",
"metadata": {
"id": "1aa3c3f7-c6c5-4419-9b25-e8d7a8ec345a"
},
"outputs": [],
"source": [
"# Write your code here for Model Building here\n",
"label_encoder = LabelEncoder()\n",
"df['Diagnosis'] = label_encoder.fit_transform(df['Diagnosis'])\n",
"# define your Deep Learning Model here, training is in the next section.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cfeaeee7",
"metadata": {},
"outputs": [],
"source": [
"features = df.drop(columns=['Diagnosis']).values\n",
"labels = df['Diagnosis'].values\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c94dbf5d",
"metadata": {},
"outputs": [],
"source": [
"# Convert the data to PyTorch tensors\n",
"X_train = torch.tensor(X_train, dtype=torch.float32)\n",
"X_test = torch.tensor(X_test, dtype=torch.float32)\n",
"y_train = torch.tensor(y_train, dtype=torch.long)\n",
"y_test = torch.tensor(y_test, dtype=torch.long)\n",
"\n",
"# Define the model architecture in PyTorch\n",
"class DiseaseClassifier(nn.Module):\n",
" def __init__(self, input_dim, hidden_dim, output_dim):\n",
" super(DiseaseClassifier, self).__init__()\n",
" self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
" self.relu = nn.ReLU()\n",
" self.fc2 = nn.Linear(hidden_dim, output_dim)\n",
" \n",
" def forward(self, x):\n",
" out = self.fc1(x)\n",
" out = self.relu(out)\n",
" out = self.fc2(out)\n",
" return out\n",
"\n",
"# Define the hyperparameters\n",
"input_dim = X_train.shape[1]\n",
"hidden_dim = 64\n",
"output_dim = 2\n",
"learning_rate = 0.001\n",
"num_epochs = 10\n",
"batch_size = 16\n",
"\n",
"# Create an instance of the model\n",
"model = DiseaseClassifier(input_dim, hidden_dim, output_dim)\n",
"\n",
"# Define the loss function and optimizer\n",
"criterion = nn.CrossEntropyLoss()\n",
"optimizer = optim.Adam(model.parameters(), lr=learning_rate)\n",
"\n",
"# Create data loaders for batching\n",
"train_dataset = torch.utils.data.TensorDataset(X_train, y_train)\n",
"train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)"
]
},
{
"cell_type": "markdown",
"id": "585b925f-fcf0-4518-81d8-598dba65d646",
"metadata": {
"id": "585b925f-fcf0-4518-81d8-598dba65d646"
},
"source": [
"### 4. Model Training\n",
"\n",
"Train your model and evaluate its performance using validation data."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee33d9bc-2b35-4f78-b5d8-3eb65db1e361",
"metadata": {
"id": "ee33d9bc-2b35-4f78-b5d8-3eb65db1e361"
},
"outputs": [],
"source": [
"# Write your code here for Model Training here\n",
"#dl_loss_value = 1\n",
"\n",
"#define the iteration\n",
"\n",
"#create the training loop\n",
"# Training loop\n",
"for epoch in range(num_epochs):\n",
" running_loss = 0.0\n",
" for inputs, labels in train_loader:\n",
" # Zero the gradients\n",
" optimizer.zero_grad()\n",
" \n",
" # Forward pass\n",
" outputs = model(inputs)\n",
" \n",
" # Compute the loss\n",
" loss = criterion(outputs, labels)\n",
" \n",
" # Backward pass and optimization\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" # Track the loss\n",
" running_loss += loss.item()\n",
" \n",
" # Print the average loss for the epoch\n",
" print(f\"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}\")\n"
]
},
{
"cell_type": "markdown",
"id": "1d391ec9-ca95-4c56-b4f6-fccf8e0be14a",
"metadata": {
"id": "1d391ec9-ca95-4c56-b4f6-fccf8e0be14a"
},
"source": [
"### 5. Model Evaluation\n",
"Evaluate your model's performance on the test data using the grading scheme defined above."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8ca8f78-e33c-4552-9f4d-8bed711e661f",
"metadata": {
"id": "c8ca8f78-e33c-4552-9f4d-8bed711e661f"
},
"outputs": [],
"source": [
"# Write your code here for Model Evaluation here\n",
"# dl_accuracy = 0\n",
"\n",
"#define the iteration\n",
"\n",
"#create the training loop\n",
"with torch.no_grad():\n",
" model.eval()\n",
" outputs = model(X_test)\n",
" _, predicted = torch.max(outputs.data, 1)\n",
" accuracy = (predicted == y_test).sum().item() / y_test.size(0)\n",
"\n",
"print(f\"\\nFinal Test Accuracy: {accuracy * 100:.2f}%\")\n"
]
},
{
"cell_type": "markdown",
"id": "5d59af48-18c0-4e40-80ff-33a85030b205",
"metadata": {
"id": "5d59af48-18c0-4e40-80ff-33a85030b205"
},
"source": [
"## Submission\n",
"\n",
"Once you are satisfied with the performance of your model, then you run the code block below to submit your project.\n"
]
},
{
"cell_type": "markdown",
"id": "aa89b9ff-0d31-416a-b3c4-851c725fadf7",
"metadata": {
"id": "aa89b9ff-0d31-416a-b3c4-851c725fadf7"
},
"source": [
"## FIN"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|