File size: 4,964 Bytes
41f37dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import boto3
import csv
import os
from botocore.exceptions import NoCredentialsError
from pdf2image import convert_from_path
from PIL import Image
import gradio as gr
from io import BytesIO

# AWS Setup
aws_access_key_id = os.getenv('AWS_ACCESS_KEY')
aws_secret_access_key = os.getenv('AWS_SECRET_KEY')
region_name = os.getenv('AWS_REGION')
s3_bucket = os.getenv('AWS_BUCKET')

textract_client = boto3.client('textract', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name)
s3_client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name)

def upload_file_to_s3(file_content, bucket, object_name=None):
    if object_name is None:
        object_name = os.path.basename(file_content)
    try:
        s3_client.upload_fileobj(file_content, bucket, object_name)
        return object_name
    except FileNotFoundError:
        print("The file was not found")
        return None
    except NoCredentialsError:
        print("Credentials not available")
        return None

def process_image(file_content, s3_bucket, textract_client, object_name):
    s3_object_key = upload_file_to_s3(file_content, s3_bucket, object_name)
    if not s3_object_key:
        return None

    # Call Textract
    response = textract_client.analyze_document(
        Document={'S3Object': {'Bucket': s3_bucket, 'Name': s3_object_key}},
        FeatureTypes=["TABLES"]
    )
    return response

def generate_table_csv(tables, blocks_map, writer):
    for table in tables:
        rows = get_rows_columns_map(table, blocks_map)
        for row_index, cols in rows.items():
            row = []
            for col_index in range(1, max(cols.keys()) + 1):
                row.append(cols.get(col_index, ""))
            writer.writerow(row)

def get_rows_columns_map(table_result, blocks_map):
    rows = {}
    for relationship in table_result['Relationships']:
        if relationship['Type'] == 'CHILD':
            for child_id in relationship['Ids']:
                cell = blocks_map[child_id]
                if 'RowIndex' in cell and 'ColumnIndex' in cell:
                    row_index = cell['RowIndex']
                    col_index = cell['ColumnIndex']
                    if row_index not in rows:
                        rows[row_index] = {}
                    rows[row_index][col_index] = get_text(cell, blocks_map)
    return rows

def get_text(result, blocks_map):
    text = ''
    if 'Relationships' in result:
        for relationship in result['Relationships']:
            if relationship['Type'] == 'CHILD':
                for child_id in relationship['Ids']:
                    word = blocks_map[child_id]
                    if word['BlockType'] == 'WORD':
                        text += word['Text'] + ' '
                    if word['BlockType'] == 'SELECTION_ELEMENT':
                        if word['SelectionStatus'] == 'SELECTED':
                            text += 'X '
    return text.strip()

def is_image_file(filename):
    image_file_extensions = ['png', 'jpg', 'jpeg']
    return any(filename.lower().endswith(ext) for ext in image_file_extensions)

def process_file_and_generate_csv(input_file):
    output_csv_path = "output.csv"  # Output CSV file name
    file_content = BytesIO(input_file.read())  # Read file content into memory for processing
    file_content.seek(0)  # Go to the start of the file-like object

    object_name = os.path.basename(input_file.name)
    
    # Check if the uploaded file is an image or needs conversion
    images = []
    if is_image_file(object_name):
        images.append(Image.open(file_content))
        file_content.seek(0)  # Reset for potential re-use
    else:
        # Convert PDF/TIFF to images
        images.extend(convert_from_path(file_content))

    csv_output = BytesIO()
    writer = csv.writer(csv_output)

    for i, image in enumerate(images):
        # Process each image and upload to S3 for Textract processing
        image_byte_array = BytesIO()
        image.save(image_byte_array, format='JPEG')
        image_byte_array.seek(0)
        
        response = process_image(image_byte_array, s3_bucket, textract_client, f"{object_name}_{i}.jpg")
        if response:
            blocks = response['Blocks']
            blocks_map = {block['Id']: block for block in blocks}
            tables = [block for block in blocks if block['BlockType'] == "TABLE"]
            generate_table_csv(tables, blocks_map, writer)
    
    csv_output.seek(0)  # Go to the start of the CSV in-memory file
    return csv_output, output_csv_path

# Gradio Interface
iface = gr.Interface(
    fn=process_file_and_generate_csv,
    inputs=gr.File(label="Upload your file (PDF, PNG, JPG, TIFF)"),
    outputs=[gr.File(label="Download Generated CSV"), "text"],
    description="Upload a document to extract tables into a CSV file."
)

# Launch the interface
iface.launch()