File size: 4,618 Bytes
41f37dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd0fcc
41f37dc
8cd0fcc
 
 
41f37dc
8cd0fcc
 
41f37dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e003f08
41f37dc
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import boto3
import csv
import os
from botocore.exceptions import NoCredentialsError
from pdf2image import convert_from_path
from PIL import Image
import gradio as gr
from io import BytesIO

# AWS Setup
aws_access_key_id = os.getenv('AWS_ACCESS_KEY')
aws_secret_access_key = os.getenv('AWS_SECRET_KEY')
region_name = os.getenv('AWS_REGION')
s3_bucket = os.getenv('AWS_BUCKET')

textract_client = boto3.client('textract', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name)
s3_client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name)

def upload_file_to_s3(file_content, bucket, object_name=None):
    if object_name is None:
        object_name = os.path.basename(file_content)
    try:
        s3_client.upload_fileobj(file_content, bucket, object_name)
        return object_name
    except FileNotFoundError:
        print("The file was not found")
        return None
    except NoCredentialsError:
        print("Credentials not available")
        return None

def process_image(file_content, s3_bucket, textract_client, object_name):
    s3_object_key = upload_file_to_s3(file_content, s3_bucket, object_name)
    if not s3_object_key:
        return None

    # Call Textract
    response = textract_client.analyze_document(
        Document={'S3Object': {'Bucket': s3_bucket, 'Name': s3_object_key}},
        FeatureTypes=["TABLES"]
    )
    return response

def generate_table_csv(tables, blocks_map, writer):
    for table in tables:
        rows = get_rows_columns_map(table, blocks_map)
        for row_index, cols in rows.items():
            row = []
            for col_index in range(1, max(cols.keys()) + 1):
                row.append(cols.get(col_index, ""))
            writer.writerow(row)

def get_rows_columns_map(table_result, blocks_map):
    rows = {}
    for relationship in table_result['Relationships']:
        if relationship['Type'] == 'CHILD':
            for child_id in relationship['Ids']:
                cell = blocks_map[child_id]
                if 'RowIndex' in cell and 'ColumnIndex' in cell:
                    row_index = cell['RowIndex']
                    col_index = cell['ColumnIndex']
                    if row_index not in rows:
                        rows[row_index] = {}
                    rows[row_index][col_index] = get_text(cell, blocks_map)
    return rows

def get_text(result, blocks_map):
    text = ''
    if 'Relationships' in result:
        for relationship in result['Relationships']:
            if relationship['Type'] == 'CHILD':
                for child_id in relationship['Ids']:
                    word = blocks_map[child_id]
                    if word['BlockType'] == 'WORD':
                        text += word['Text'] + ' '
                    if word['BlockType'] == 'SELECTION_ELEMENT':
                        if word['SelectionStatus'] == 'SELECTED':
                            text += 'X '
    return text.strip()

def is_image_file(filename):
    image_file_extensions = ['png', 'jpg', 'jpeg']
    return any(filename.lower().endswith(ext) for ext in image_file_extensions)

def process_file_and_generate_csv(input_file):
    # Check if the uploaded file is an image or needs conversion to images
    images = []
    if is_image_file(input_file.name):
        input_file.seek(0)  # Go to the start of the file
        images.append(Image.open(input_file))
    else:
        input_file.seek(0)  # Ensure we're at the start of the file
        images.extend(convert_from_bytes(input_file.read()))

    csv_output = BytesIO()
    writer = csv.writer(csv_output)

    for i, image in enumerate(images):
        image_byte_array = BytesIO()
        image.save(image_byte_array, format='JPEG')
        image_byte_array.seek(0)
        
        response = process_image(image_byte_array, s3_bucket, textract_client, f"{object_name}_{i}.jpg")
        if response:
            blocks = response['Blocks']
            blocks_map = {block['Id']: block for block in blocks}
            tables = [block for block in blocks if block['BlockType'] == "TABLE"]
            generate_table_csv(tables, blocks_map, writer)
    
    csv_output.seek(0)
    return csv_output, output_csv_path

# Gradio Interface
iface = gr.Interface(
    fn=process_file_and_generate_csv,
    inputs=gr.File(label="Upload your file (PDF, PNG, JPG, TIFF)"),
    outputs=[gr.File(label="Download Generated CSV"), "text"],
    description="Upload a document to extract tables into a CSV file."
)

# Launch the interface
iface.launch()