Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import boto3
|
2 |
+
import csv
|
3 |
+
import os
|
4 |
+
from botocore.exceptions import NoCredentialsError
|
5 |
+
from pdf2image import convert_from_path
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
# AWS Setup
|
11 |
+
aws_access_key_id = os.getenv('AWS_ACCESS_KEY')
|
12 |
+
aws_secret_access_key = os.getenv('AWS_SECRET_KEY')
|
13 |
+
region_name = os.getenv('AWS_REGION')
|
14 |
+
s3_bucket = os.getenv('AWS_BUCKET')
|
15 |
+
|
16 |
+
textract_client = boto3.client('textract', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name)
|
17 |
+
s3_client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name)
|
18 |
+
|
19 |
+
def upload_file_to_s3(file_content, bucket, object_name=None):
|
20 |
+
if object_name is None:
|
21 |
+
object_name = os.path.basename(file_content)
|
22 |
+
try:
|
23 |
+
s3_client.upload_fileobj(file_content, bucket, object_name)
|
24 |
+
return object_name
|
25 |
+
except FileNotFoundError:
|
26 |
+
print("The file was not found")
|
27 |
+
return None
|
28 |
+
except NoCredentialsError:
|
29 |
+
print("Credentials not available")
|
30 |
+
return None
|
31 |
+
|
32 |
+
def process_image(file_content, s3_bucket, textract_client, object_name):
|
33 |
+
s3_object_key = upload_file_to_s3(file_content, s3_bucket, object_name)
|
34 |
+
if not s3_object_key:
|
35 |
+
return None
|
36 |
+
|
37 |
+
# Call Textract
|
38 |
+
response = textract_client.analyze_document(
|
39 |
+
Document={'S3Object': {'Bucket': s3_bucket, 'Name': s3_object_key}},
|
40 |
+
FeatureTypes=["TABLES"]
|
41 |
+
)
|
42 |
+
return response
|
43 |
+
|
44 |
+
def generate_table_csv(tables, blocks_map, writer):
|
45 |
+
for table in tables:
|
46 |
+
rows = get_rows_columns_map(table, blocks_map)
|
47 |
+
for row_index, cols in rows.items():
|
48 |
+
row = []
|
49 |
+
for col_index in range(1, max(cols.keys()) + 1):
|
50 |
+
row.append(cols.get(col_index, ""))
|
51 |
+
writer.writerow(row)
|
52 |
+
|
53 |
+
def get_rows_columns_map(table_result, blocks_map):
|
54 |
+
rows = {}
|
55 |
+
for relationship in table_result['Relationships']:
|
56 |
+
if relationship['Type'] == 'CHILD':
|
57 |
+
for child_id in relationship['Ids']:
|
58 |
+
cell = blocks_map[child_id]
|
59 |
+
if 'RowIndex' in cell and 'ColumnIndex' in cell:
|
60 |
+
row_index = cell['RowIndex']
|
61 |
+
col_index = cell['ColumnIndex']
|
62 |
+
if row_index not in rows:
|
63 |
+
rows[row_index] = {}
|
64 |
+
rows[row_index][col_index] = get_text(cell, blocks_map)
|
65 |
+
return rows
|
66 |
+
|
67 |
+
def get_text(result, blocks_map):
|
68 |
+
text = ''
|
69 |
+
if 'Relationships' in result:
|
70 |
+
for relationship in result['Relationships']:
|
71 |
+
if relationship['Type'] == 'CHILD':
|
72 |
+
for child_id in relationship['Ids']:
|
73 |
+
word = blocks_map[child_id]
|
74 |
+
if word['BlockType'] == 'WORD':
|
75 |
+
text += word['Text'] + ' '
|
76 |
+
if word['BlockType'] == 'SELECTION_ELEMENT':
|
77 |
+
if word['SelectionStatus'] == 'SELECTED':
|
78 |
+
text += 'X '
|
79 |
+
return text.strip()
|
80 |
+
|
81 |
+
def is_image_file(filename):
|
82 |
+
image_file_extensions = ['png', 'jpg', 'jpeg']
|
83 |
+
return any(filename.lower().endswith(ext) for ext in image_file_extensions)
|
84 |
+
|
85 |
+
def process_file_and_generate_csv(input_file):
|
86 |
+
output_csv_path = "output.csv" # Output CSV file name
|
87 |
+
file_content = BytesIO(input_file.read()) # Read file content into memory for processing
|
88 |
+
file_content.seek(0) # Go to the start of the file-like object
|
89 |
+
|
90 |
+
object_name = os.path.basename(input_file.name)
|
91 |
+
|
92 |
+
# Check if the uploaded file is an image or needs conversion
|
93 |
+
images = []
|
94 |
+
if is_image_file(object_name):
|
95 |
+
images.append(Image.open(file_content))
|
96 |
+
file_content.seek(0) # Reset for potential re-use
|
97 |
+
else:
|
98 |
+
# Convert PDF/TIFF to images
|
99 |
+
images.extend(convert_from_path(file_content))
|
100 |
+
|
101 |
+
csv_output = BytesIO()
|
102 |
+
writer = csv.writer(csv_output)
|
103 |
+
|
104 |
+
for i, image in enumerate(images):
|
105 |
+
# Process each image and upload to S3 for Textract processing
|
106 |
+
image_byte_array = BytesIO()
|
107 |
+
image.save(image_byte_array, format='JPEG')
|
108 |
+
image_byte_array.seek(0)
|
109 |
+
|
110 |
+
response = process_image(image_byte_array, s3_bucket, textract_client, f"{object_name}_{i}.jpg")
|
111 |
+
if response:
|
112 |
+
blocks = response['Blocks']
|
113 |
+
blocks_map = {block['Id']: block for block in blocks}
|
114 |
+
tables = [block for block in blocks if block['BlockType'] == "TABLE"]
|
115 |
+
generate_table_csv(tables, blocks_map, writer)
|
116 |
+
|
117 |
+
csv_output.seek(0) # Go to the start of the CSV in-memory file
|
118 |
+
return csv_output, output_csv_path
|
119 |
+
|
120 |
+
# Gradio Interface
|
121 |
+
iface = gr.Interface(
|
122 |
+
fn=process_file_and_generate_csv,
|
123 |
+
inputs=gr.File(label="Upload your file (PDF, PNG, JPG, TIFF)"),
|
124 |
+
outputs=[gr.File(label="Download Generated CSV"), "text"],
|
125 |
+
description="Upload a document to extract tables into a CSV file."
|
126 |
+
)
|
127 |
+
|
128 |
+
# Launch the interface
|
129 |
+
iface.launch()
|