Spaces:
Runtime error
Runtime error
danial0203
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -54,44 +54,78 @@ def process_files_fixed(image_path, page_identifier, error_pages):
|
|
54 |
error_pages.append(page_identifier)
|
55 |
return []
|
56 |
|
57 |
-
prompt = """
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
"""
|
95 |
|
96 |
payload = {
|
97 |
"model": "gpt-4-vision-preview",
|
|
|
54 |
error_pages.append(page_identifier)
|
55 |
return []
|
56 |
|
57 |
+
prompt = """**Objective:** Extract specific data from a table within an image using OCR.
|
58 |
+
|
59 |
+
**Image Description:** The image contains a table with student information.
|
60 |
+
|
61 |
+
**Columns of Interest:**
|
62 |
+
|
63 |
+
* S.No (Serial Number)
|
64 |
+
* Admission No.
|
65 |
+
* Date of Admission
|
66 |
+
* Name of Student
|
67 |
+
* Father's Name
|
68 |
+
* Date of Birth
|
69 |
+
* Telephone No.
|
70 |
+
* Address
|
71 |
+
* F.CNIC (Father's CNIC)
|
72 |
+
* S.CNIC (Student's CNIC) - Located under the "REMARKS" column
|
73 |
+
* M.Name (Mother's Name) - Located under the "REMARKS" column
|
74 |
+
|
75 |
+
**Instructions:**
|
76 |
+
|
77 |
+
1. **Perform OCR:** Use Optical Character Recognition to extract text from the image.
|
78 |
+
2. **Table Detection:** Identify the table within the image.
|
79 |
+
3. **Column Identification:**
|
80 |
+
* If table headers are present and visible, use them to identify the columns of interest.
|
81 |
+
* If headers are missing or unclear, assume the order of columns as specified above.
|
82 |
+
4. **Data Extraction:**
|
83 |
+
* Extract data from each row of the table for the specified columns only.
|
84 |
+
* Disregard any additional columns present in the table.
|
85 |
+
* **Important:** Extract data from all rows, do not skip any rows.
|
86 |
+
* For "Telephone No.", focus on the number itself and ignore any labels like "office" or "residence" associated with it.
|
87 |
+
* For "F.CNIC", "S.CNIC", and "M.Name", extract this information from the "REMARKS" column.
|
88 |
+
5. **Data Verification:**
|
89 |
+
* Implement checks to ensure the accuracy of extracted data, especially for numerical values like "S.No" and "Telephone No."
|
90 |
+
* Consider using checksums or validation rules based on known formats (e.g., CNIC format).
|
91 |
+
|
92 |
+
**Output Format:**
|
93 |
+
|
94 |
+
```json
|
95 |
+
{
|
96 |
+
"data": [
|
97 |
+
{
|
98 |
+
"S_No": "1",
|
99 |
+
"Admission No.": "1604",
|
100 |
+
"Date of Admission": "25-4-17",
|
101 |
+
"Name of Student": "Maham Tariq",
|
102 |
+
"Father's Name": "Tariq Mehman",
|
103 |
+
"Date of Birth": "12-05-12",
|
104 |
+
"Telephone No.": "03125350838",
|
105 |
+
"Address": "Dewan-e-umar Masjid F1014",
|
106 |
+
"F.CNIC": "61101-9729652-7",
|
107 |
+
"S.CNIC": "61101-8018797-4",
|
108 |
+
"M.Name": "Nasira"
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"S_No": "2",
|
112 |
+
"Admission No.": "1640",
|
113 |
+
"Date of Admission": "05-10-20",
|
114 |
+
"Name of Student": "Areej Jibran",
|
115 |
+
"Father's Name": "M.Jibran",
|
116 |
+
"Date of Birth": "05-04-14",
|
117 |
+
"Telephone No.": "03335173534",
|
118 |
+
"Address": "H#65 st#11 G11/I isb",
|
119 |
+
"F. CNIC": "37405-0393951-3",
|
120 |
+
"S.CNIC": "37405-5642572-3",
|
121 |
+
"M.Name": "Taqdees Jibran"
|
122 |
+
}
|
123 |
+
]
|
124 |
+
}
|
125 |
+
|
126 |
+
"""
|
127 |
|
128 |
+
|
|
|
129 |
|
130 |
payload = {
|
131 |
"model": "gpt-4-vision-preview",
|