Spaces:
Sleeping
Sleeping
File size: 13,239 Bytes
37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da 31692d5 37c00da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import streamlit as st
import networkx as nx
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import numpy as np
from streamlit_agraph import agraph, Node, Edge, Config
def plot_compatibility(plants, compatibility_matrix, is_mini=False):
# Create the graph
G = nx.Graph()
G.add_nodes_from(plants)
for i in range(len(plants)):
for j in range(i + 1, len(plants)):
if compatibility_matrix[i][j] == 0:
G.add_edge(plants[i], plants[j], color="dimgrey")
else:
G.add_edge(
plants[i],
plants[j],
color="green"
if compatibility_matrix[i][j] == 1
else "mediumvioletred",
)
# Generate positions for the nodes
pos = nx.spring_layout(G)
# Create node trace
node_trace = go.Scatter(
x=[pos[node][0] for node in G.nodes()],
y=[pos[node][1] for node in G.nodes()],
text=list(G.nodes()),
mode="markers+text",
textposition="top center",
hoverinfo="text",
marker=dict(
size=40,
color="lightblue",
line_width=2,
),
)
# Create edge trace
edge_trace = go.Scatter(
x=[], y=[], line=dict(width=1, color="dimgrey"), hoverinfo="none", mode="lines"
)
# Add coordinates to edge trace
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_trace["x"] += tuple([x0, x1, None])
edge_trace["y"] += tuple([y0, y1, None])
# Create edge traces for colored edges
edge_traces = []
edge_legend = set() # Set to store unique edge colors
for edge in G.edges(data=True):
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
color = edge[2]["color"]
trace = go.Scatter(
x=[x0, x1],
y=[y0, y1],
mode="lines",
line=dict(width=2, color=color),
hoverinfo="none",
)
edge_traces.append(trace)
edge_legend.add(color) # Add edge color to the set
# Create layout
layout = go.Layout(
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
)
# Create figure
fig = go.Figure(data=[edge_trace, *edge_traces, node_trace], layout=layout)
# Create custom legend for edge colors
custom_legend = []
legend_names = ["Neutral", "Negative", "Positive"]
legend_colors = ["dimgrey", "mediumvioletred", "green"]
for name, color in zip(legend_names, legend_colors):
custom_legend.append(
go.Scatter(
x=[None],
y=[None],
mode="markers",
marker=dict(color=color),
name=f"{name}",
showlegend=True,
hoverinfo="none",
)
)
if is_mini == False:
# Create layout for custom legend figure
legend_layout = go.Layout(
title="Plant Compatibility Network Graph",
showlegend=True,
margin=dict(b=1, t=100),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=120,
legend=dict(
title="Edge Colors",
orientation="h",
x=-1,
y=1.1,
bgcolor="rgba(0,0,0,0)",
),
)
else:
fig.update_layout(
autosize=False,
width=300,
height=300,
)
if is_mini == False:
# Create figure for custom legend
legend_fig = go.Figure(data=custom_legend, layout=legend_layout)
# Render the custom legend using Plotly in Streamlit
st.plotly_chart(legend_fig, use_container_width=True)
# Render the graph using Plotly in Streamlit
st.plotly_chart(fig)
# this is not used as it needs to be refactored and is not working as intended
def show_plant_tips():
tips_string = st.session_state.plant_care_tips
tips_list = tips_string.split("\n")
num_tips = len(tips_list)
st.markdown(
"## Plant Care Tips for your plants: "
+ str(st.session_state.input_plants_raw)
+ "\n\n"
+ st.session_state.plant_care_tips
)
def visualize_groupings_sankey():
groupings = st.session_state.grouping
compatibility_matrix = st.session_state.extracted_mat
plant_list = st.session_state.input_plants_raw
for i, bed_species in enumerate(groupings):
st.subheader(f"Plant Bed {i + 1}")
# Create the nodes
nodes = []
for species in bed_species:
nodes.append(species)
# Create the links
links = []
for j, species1 in enumerate(bed_species):
for k, species2 in enumerate(bed_species):
if j < k:
species1_index = plant_list.index(species1)
species2_index = plant_list.index(species2)
compatibility = compatibility_matrix[species1_index][species2_index]
if compatibility == 1:
color = "green"
elif compatibility == -1:
color = "pink"
else:
color = "grey"
links.append(
dict(source=j, target=k, value=compatibility, color=color)
)
# Create the Sankey diagram
fig = go.Figure(
data=[
go.Sankey(
node=dict(label=nodes, color="lightblue"),
link=dict(
source=[link["source"] for link in links],
target=[link["target"] for link in links],
value=[link["value"] for link in links],
color=[link["color"] for link in links],
),
)
]
)
# Set the layout properties
layout = go.Layout(
plot_bgcolor="black", paper_bgcolor="black", title_font=dict(color="white")
)
# Set the figure layout
fig.update_layout(layout)
# Render the Sankey diagram in Streamlit
st.plotly_chart(fig)
def visualize_groupings():
groupings = st.session_state.grouping
compatibility_matrix = st.session_state.extracted_mat
plant_list = st.session_state.input_plants_raw
def generate_grouping_matrices(groupings, compatibility_matrix, plant_list):
grouping_matrices = []
for grouping in groupings:
indices = [plant_list.index(plant) for plant in grouping]
submatrix = [[compatibility_matrix[i][j] for j in indices] for i in indices]
grouping_matrices.append(submatrix)
return grouping_matrices
grouping_matrices = generate_grouping_matrices(
groupings, compatibility_matrix, plant_list
)
for i, submatrix in enumerate(grouping_matrices):
col1, col2 = st.columns([1, 3])
with col1:
st.write(f"Plant Bed {i + 1}")
st.write("Plant List")
st.write(groupings[i])
with col2:
plot_compatibility_with_agraph(
groupings[i], st.session_state.full_mat, is_mini=True
)
def plot_compatibility_with_agraph(plants, compatibility_matrix, is_mini=False):
# Create nodes and edges for the graph
nodes = []
edges = []
# Function to get the image URL for a plant
def get_image_url(plant_name):
index = st.session_state.plant_list.index(plant_name)
image_path = f"https://github.com/4dh/GRDN/blob/dev/src/assets/plant_images/plant_{index}.png?raw=true"
print(image_path)
return image_path
size_n = 32 if not is_mini else 24
# Create nodes with images
for plant in plants:
nodes.append(
Node(
id=plant,
label=plant,
# make text bigger
font={"size": 20},
# spread nodes out
scaling={"label": {"enabled": True}},
size=size_n,
shape="circularImage",
image=get_image_url(plant),
)
)
# Create edges based on compatibility
# for i in range(len(st.session_state.plant_list)):
# loop through all plants in raw long list and find the index of the plant in the plant list to get relevant metadata. skip if we are looking at the same plant
for i, i_p in enumerate(st.session_state.plant_list):
for j, j_p in enumerate(st.session_state.plant_list):
if i != j:
# check if plants[i] and plants[j] are in input_plants_raw
# print(st.session_state.input_plants_raw)
if is_mini == False:
length_e = 300
else:
length_e = 150
if (
i_p in st.session_state.input_plants_raw
and j_p in st.session_state.input_plants_raw
):
# use the compatibility matrix and the plant to index mapping to determine the color of the edge
if compatibility_matrix[i][j] == 1:
color = "green"
edges.append(
Edge(
source=i_p,
target=j_p,
width=3.5,
type="CURVE_SMOOTH",
color=color,
length=length_e,
)
)
print(i, j, i_p, j_p, color)
elif compatibility_matrix[i][j] == -1:
color = "mediumvioletred"
edges.append(
Edge(
source=i_p,
target=j_p,
width=3.5,
type="CURVE_SMOOTH",
color=color,
length=length_e,
)
)
print(i, j, i_p, j_p, color)
else:
color = "dimgrey"
edges.append(
Edge(
source=i_p,
target=j_p,
width=0.2,
type="CURVE_SMOOTH",
color=color,
length=length_e,
)
)
print(i, j, i_p, j_p, color)
# Configuration for the graph
config = Config(
width=650 if not is_mini else 400,
height=400 if not is_mini else 400,
directed=False,
physics=True,
hierarchical=False,
nodeHighlightBehavior=True,
highlightColor="#F7A7A6",
collapsible=True,
maxZoom=5,
minZoom=0.2,
initialZoom=4,
)
# Handling for non-mini version
if not is_mini:
# Create custom legend for edge colors at the top of the page
custom_legend = []
legend_names = ["Neutral", "Negative", "Positive"]
legend_colors = ["dimgrey", "mediumvioletred", "green"]
for name, color in zip(legend_names, legend_colors):
custom_legend.append(
go.Scatter(
x=[None],
y=[None],
mode="markers",
marker=dict(color=color),
name=name,
showlegend=True,
hoverinfo="none",
)
)
# Create layout for custom legend figure
legend_layout = go.Layout(
title="Plant Compatibility Network Graph",
showlegend=True,
margin=dict(b=1, t=100),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=120,
legend=dict(
title="Edge Colors",
orientation="h",
# make it appear above the graph
x=-1,
y=1.1,
bgcolor="rgba(0,0,0,0)",
),
)
# Create figure for custom legend
legend_fig = go.Figure(data=custom_legend, layout=legend_layout)
# Render the custom legend using Plotly in Streamlit
st.plotly_chart(legend_fig, use_container_width=True)
# Render the graph using streamlit-agraph
return_value = agraph(nodes=nodes, edges=edges, config=config)
|