import streamlit as st import networkx as nx import plotly.graph_objects as go import matplotlib.pyplot as plt import numpy as np from streamlit_agraph import agraph, Node, Edge, Config def plot_compatibility(plants, compatibility_matrix, is_mini=False): # Create the graph G = nx.Graph() G.add_nodes_from(plants) for i in range(len(plants)): for j in range(i + 1, len(plants)): if compatibility_matrix[i][j] == 0: G.add_edge(plants[i], plants[j], color="dimgrey") else: G.add_edge( plants[i], plants[j], color="green" if compatibility_matrix[i][j] == 1 else "mediumvioletred", ) # Generate positions for the nodes pos = nx.spring_layout(G) # Create node trace node_trace = go.Scatter( x=[pos[node][0] for node in G.nodes()], y=[pos[node][1] for node in G.nodes()], text=list(G.nodes()), mode="markers+text", textposition="top center", hoverinfo="text", marker=dict( size=40, color="lightblue", line_width=2, ), ) # Create edge trace edge_trace = go.Scatter( x=[], y=[], line=dict(width=1, color="dimgrey"), hoverinfo="none", mode="lines" ) # Add coordinates to edge trace for edge in G.edges(): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_trace["x"] += tuple([x0, x1, None]) edge_trace["y"] += tuple([y0, y1, None]) # Create edge traces for colored edges edge_traces = [] edge_legend = set() # Set to store unique edge colors for edge in G.edges(data=True): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] color = edge[2]["color"] trace = go.Scatter( x=[x0, x1], y=[y0, y1], mode="lines", line=dict(width=2, color=color), hoverinfo="none", ) edge_traces.append(trace) edge_legend.add(color) # Add edge color to the set # Create layout layout = go.Layout( showlegend=False, hovermode="closest", margin=dict(b=20, l=5, r=5, t=40), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), ) # Create figure fig = go.Figure(data=[edge_trace, *edge_traces, node_trace], layout=layout) # Create custom legend for edge colors custom_legend = [] legend_names = ["Neutral", "Negative", "Positive"] legend_colors = ["dimgrey", "mediumvioletred", "green"] for name, color in zip(legend_names, legend_colors): custom_legend.append( go.Scatter( x=[None], y=[None], mode="markers", marker=dict(color=color), name=f"{name}", showlegend=True, hoverinfo="none", ) ) if is_mini == False: # Create layout for custom legend figure legend_layout = go.Layout( title="Plant Compatibility Network Graph", showlegend=True, margin=dict(b=1, t=100), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), height=120, legend=dict( title="Edge Colors", orientation="h", x=-1, y=1.1, bgcolor="rgba(0,0,0,0)", ), ) else: fig.update_layout( autosize=False, width=300, height=300, ) if is_mini == False: # Create figure for custom legend legend_fig = go.Figure(data=custom_legend, layout=legend_layout) # Render the custom legend using Plotly in Streamlit st.plotly_chart(legend_fig, use_container_width=True) # Render the graph using Plotly in Streamlit st.plotly_chart(fig) # this is not used as it needs to be refactored and is not working as intended def show_plant_tips(): tips_string = st.session_state.plant_care_tips tips_list = tips_string.split("\n") num_tips = len(tips_list) st.markdown( "## Plant Care Tips for your plants: " + str(st.session_state.input_plants_raw) + "\n\n" + st.session_state.plant_care_tips ) def visualize_groupings_sankey(): groupings = st.session_state.grouping compatibility_matrix = st.session_state.extracted_mat plant_list = st.session_state.input_plants_raw for i, bed_species in enumerate(groupings): st.subheader(f"Plant Bed {i + 1}") # Create the nodes nodes = [] for species in bed_species: nodes.append(species) # Create the links links = [] for j, species1 in enumerate(bed_species): for k, species2 in enumerate(bed_species): if j < k: species1_index = plant_list.index(species1) species2_index = plant_list.index(species2) compatibility = compatibility_matrix[species1_index][species2_index] if compatibility == 1: color = "green" elif compatibility == -1: color = "pink" else: color = "grey" links.append( dict(source=j, target=k, value=compatibility, color=color) ) # Create the Sankey diagram fig = go.Figure( data=[ go.Sankey( node=dict(label=nodes, color="lightblue"), link=dict( source=[link["source"] for link in links], target=[link["target"] for link in links], value=[link["value"] for link in links], color=[link["color"] for link in links], ), ) ] ) # Set the layout properties layout = go.Layout( plot_bgcolor="black", paper_bgcolor="black", title_font=dict(color="white") ) # Set the figure layout fig.update_layout(layout) # Render the Sankey diagram in Streamlit st.plotly_chart(fig) def visualize_groupings(): groupings = st.session_state.grouping compatibility_matrix = st.session_state.extracted_mat plant_list = st.session_state.input_plants_raw def generate_grouping_matrices(groupings, compatibility_matrix, plant_list): grouping_matrices = [] for grouping in groupings: indices = [plant_list.index(plant) for plant in grouping] submatrix = [[compatibility_matrix[i][j] for j in indices] for i in indices] grouping_matrices.append(submatrix) return grouping_matrices grouping_matrices = generate_grouping_matrices( groupings, compatibility_matrix, plant_list ) for i, submatrix in enumerate(grouping_matrices): col1, col2 = st.columns([1, 3]) with col1: st.write(f"Plant Bed {i + 1}") st.write("Plant List") st.write(groupings[i]) with col2: plot_compatibility_with_agraph( groupings[i], st.session_state.full_mat, is_mini=True ) def plot_compatibility_with_agraph(plants, compatibility_matrix, is_mini=False): # Create nodes and edges for the graph nodes = [] edges = [] # Function to get the image URL for a plant def get_image_url(plant_name): index = st.session_state.plant_list.index(plant_name) image_path = f"https://github.com/4dh/GRDN/blob/dev/src/assets/plant_images/plant_{index}.png?raw=true" print(image_path) return image_path size_n = 32 if not is_mini else 24 # Create nodes with images for plant in plants: nodes.append( Node( id=plant, label=plant, # make text bigger font={"size": 20}, # spread nodes out scaling={"label": {"enabled": True}}, size=size_n, shape="circularImage", image=get_image_url(plant), ) ) # Create edges based on compatibility # for i in range(len(st.session_state.plant_list)): # loop through all plants in raw long list and find the index of the plant in the plant list to get relevant metadata. skip if we are looking at the same plant for i, i_p in enumerate(st.session_state.plant_list): for j, j_p in enumerate(st.session_state.plant_list): if i != j: # check if plants[i] and plants[j] are in input_plants_raw # print(st.session_state.input_plants_raw) if is_mini == False: length_e = 300 else: length_e = 150 if ( i_p in st.session_state.input_plants_raw and j_p in st.session_state.input_plants_raw ): # use the compatibility matrix and the plant to index mapping to determine the color of the edge if compatibility_matrix[i][j] == 1: color = "green" edges.append( Edge( source=i_p, target=j_p, width=3.5, type="CURVE_SMOOTH", color=color, length=length_e, ) ) print(i, j, i_p, j_p, color) elif compatibility_matrix[i][j] == -1: color = "mediumvioletred" edges.append( Edge( source=i_p, target=j_p, width=3.5, type="CURVE_SMOOTH", color=color, length=length_e, ) ) print(i, j, i_p, j_p, color) else: color = "dimgrey" edges.append( Edge( source=i_p, target=j_p, width=0.2, type="CURVE_SMOOTH", color=color, length=length_e, ) ) print(i, j, i_p, j_p, color) # Configuration for the graph config = Config( width=650 if not is_mini else 400, height=400 if not is_mini else 400, directed=False, physics=True, hierarchical=False, nodeHighlightBehavior=True, highlightColor="#F7A7A6", collapsible=True, maxZoom=5, minZoom=0.2, initialZoom=4, ) # Handling for non-mini version if not is_mini: # Create custom legend for edge colors at the top of the page custom_legend = [] legend_names = ["Neutral", "Negative", "Positive"] legend_colors = ["dimgrey", "mediumvioletred", "green"] for name, color in zip(legend_names, legend_colors): custom_legend.append( go.Scatter( x=[None], y=[None], mode="markers", marker=dict(color=color), name=name, showlegend=True, hoverinfo="none", ) ) # Create layout for custom legend figure legend_layout = go.Layout( title="Plant Compatibility Network Graph", showlegend=True, margin=dict(b=1, t=100), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), height=120, legend=dict( title="Edge Colors", orientation="h", # make it appear above the graph x=-1, y=1.1, bgcolor="rgba(0,0,0,0)", ), ) # Create figure for custom legend legend_fig = go.Figure(data=custom_legend, layout=legend_layout) # Render the custom legend using Plotly in Streamlit st.plotly_chart(legend_fig, use_container_width=True) # Render the graph using streamlit-agraph return_value = agraph(nodes=nodes, edges=edges, config=config)