File size: 1,165 Bytes
3f04ab9
 
 
 
 
 
 
d36eefc
 
3f04ab9
 
 
 
 
 
 
 
 
 
 
53e8781
 
 
3f04ab9
 
 
d36eefc
23676a3
3f04ab9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['learn_inf', 'categories', 'image', 'label', 'examples', 'intf', 'classify_images']

# %% app.ipynb 23
from fastai.vision.all import *
import gradio as gr

# %% app.ipynb 25
learn_inf = load_learner('model.pkl')

# %% app.ipynb 28
categories = ('edvard_munch', 'vincent_van_gogh')

def classify_images(img):
    pred, idx,probs = learn_inf.predict(img)
    return dict(zip(categories, map(float,probs)))

# %% app.ipynb 30
title = "Vincent or Edvard paintings Classifier"
description = "Gradio Demo for a image classifier trained with fastai. To use it, simply upload your image, or click one of the examples to load them."
article = "<p style='text-align: center; font-weight: bold;'><a href='https://github.com/verdugo-danieML/vincent_or_edvard' target='_blank'>Github Repo 🚀</a></p></p>"
image = gr.inputs.Image(shape=(256,256))
label = gr.outputs.Label()
examples = ['vincent_van_gogh.jpg', 'edvard_munch.jpg']

intf = gr.Interface(fn= classify_images, inputs=image, outputs=label, examples=examples,title=title,description=description,article=article)
intf.launch(inline=False)