Spaces:
Runtime error
Runtime error
daniel-de-leon
commited on
Commit
•
1683bca
1
Parent(s):
534b64b
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,63 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import streamlit.components.v1 as components
|
3 |
-
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
|
4 |
-
pipeline)
|
5 |
-
import shap
|
6 |
-
from PIL import Image
|
7 |
-
|
8 |
-
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
-
output_width = 800
|
10 |
-
output_height = 300
|
11 |
-
rescale_logits = False
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
st.set_page_config(page_title='Text Classification with Shap')
|
16 |
-
logo = Image.open('Intel-logo.png')
|
17 |
-
st.sidebar.image(logo)
|
18 |
-
st.title('Interpreting HF Pipeline Text Classification with Shap')
|
19 |
-
|
20 |
-
form = st.sidebar.form("Model Selection")
|
21 |
-
form.header('Model Selection')
|
22 |
-
|
23 |
-
model_name = form.
|
24 |
-
form.form_submit_button("Submit")
|
25 |
-
|
26 |
-
|
27 |
-
@st.cache_data()
|
28 |
-
def load_model(model_name):
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
30 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
-
|
32 |
-
return tokenizer, model
|
33 |
-
|
34 |
-
tokenizer, model = load_model(model_name)
|
35 |
-
pred = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None)
|
36 |
-
explainer = shap.Explainer(pred, rescale_to_logits = rescale_logits)
|
37 |
-
|
38 |
-
col1, col2 = st.columns(2)
|
39 |
-
text = col1.text_area("Enter text input", value = "Classify me.")
|
40 |
-
|
41 |
-
result = pred(text)
|
42 |
-
top_pred = result[0][0]['label']
|
43 |
-
col2.write('')
|
44 |
-
for label in result[0]:
|
45 |
-
col2.write(f'**{label["label"]}**: {label["score"]: .2f}')
|
46 |
-
|
47 |
-
shap_values = explainer([text])
|
48 |
-
|
49 |
-
force_plot = shap.plots.text(shap_values, display=False)
|
50 |
-
bar_plot = shap.plots.bar(shap_values[0, :, top_pred], order=shap.Explanation.argsort.flip, show=False)
|
51 |
-
|
52 |
-
st.markdown("""
|
53 |
-
<style>
|
54 |
-
.big-font {
|
55 |
-
font-size:35px !important;
|
56 |
-
}
|
57 |
-
</style>
|
58 |
-
""", unsafe_allow_html=True)
|
59 |
-
st.markdown(f'<center><p class="big-font">Shap Bar Plot for <i>{top_pred}</i> Prediction</p></center>', unsafe_allow_html=True)
|
60 |
-
st.pyplot(bar_plot, clear_figure=True)
|
61 |
-
|
62 |
-
st.markdown('<center><p class="big-font">Shap Interactive Force Plot</p></center>', unsafe_allow_html=True)
|
63 |
-
components.html(force_plot, height=output_height, width=output_width, scrolling=True)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as components
|
3 |
+
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
|
4 |
+
pipeline)
|
5 |
+
import shap
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
+
output_width = 800
|
10 |
+
output_height = 300
|
11 |
+
rescale_logits = False
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
st.set_page_config(page_title='Text Classification with Shap')
|
16 |
+
logo = Image.open('Intel-logo.png')
|
17 |
+
st.sidebar.image(logo)
|
18 |
+
st.title('Interpreting HF Pipeline Text Classification with Shap')
|
19 |
+
|
20 |
+
form = st.sidebar.form("Model Selection")
|
21 |
+
form.header('Model Selection')
|
22 |
+
|
23 |
+
model_name = form.text_input("Enter the name of the text classification LLM (note: model must be fine-tuned on a text classification task)", value = "Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
24 |
+
form.form_submit_button("Submit")
|
25 |
+
|
26 |
+
|
27 |
+
@st.cache_data()
|
28 |
+
def load_model(model_name):
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
+
|
32 |
+
return tokenizer, model
|
33 |
+
|
34 |
+
tokenizer, model = load_model(model_name)
|
35 |
+
pred = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None)
|
36 |
+
explainer = shap.Explainer(pred, rescale_to_logits = rescale_logits)
|
37 |
+
|
38 |
+
col1, col2 = st.columns(2)
|
39 |
+
text = col1.text_area("Enter text input", value = "Classify me.")
|
40 |
+
|
41 |
+
result = pred(text)
|
42 |
+
top_pred = result[0][0]['label']
|
43 |
+
col2.write('')
|
44 |
+
for label in result[0]:
|
45 |
+
col2.write(f'**{label["label"]}**: {label["score"]: .2f}')
|
46 |
+
|
47 |
+
shap_values = explainer([text])
|
48 |
+
|
49 |
+
force_plot = shap.plots.text(shap_values, display=False)
|
50 |
+
bar_plot = shap.plots.bar(shap_values[0, :, top_pred], order=shap.Explanation.argsort.flip, show=False)
|
51 |
+
|
52 |
+
st.markdown("""
|
53 |
+
<style>
|
54 |
+
.big-font {
|
55 |
+
font-size:35px !important;
|
56 |
+
}
|
57 |
+
</style>
|
58 |
+
""", unsafe_allow_html=True)
|
59 |
+
st.markdown(f'<center><p class="big-font">Shap Bar Plot for <i>{top_pred}</i> Prediction</p></center>', unsafe_allow_html=True)
|
60 |
+
st.pyplot(bar_plot, clear_figure=True)
|
61 |
+
|
62 |
+
st.markdown('<center><p class="big-font">Shap Interactive Force Plot</p></center>', unsafe_allow_html=True)
|
63 |
+
components.html(force_plot, height=output_height, width=output_width, scrolling=True)
|