File size: 1,590 Bytes
6a9cefc
 
 
bfa693b
 
 
 
 
 
88ac74b
6a9cefc
 
 
 
 
 
 
 
 
17ee47c
bfa693b
6a9cefc
bfa693b
17ee47c
6a9cefc
 
b75744c
 
 
 
6a9cefc
 
7aa6f86
 
 
 
bfa693b
7aa6f86
bfa693b
7aa6f86
 
 
46074bc
 
7aa6f86
 
6a9cefc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import evaluate
from evaluate.evaluation_suite import SubTask

# This is odd because the first dataset is multi-class and
# the second dataset is binary. The model I'm using has 4 labels
# and is finetuned to the first dataset.
# So what does it mean for this model to be evaluated on the second
# dataset?

metric = evaluate.combine(["accuracy"])

class Suite(evaluate.EvaluationSuite):

    def __init__(self, name):
        super().__init__(name)
        self.preprocessor = lambda x: {"text": x["text"].lower()}
        self.suite = [
            SubTask(
                task_type="text-classification",
                data="hate_speech18",
                split="train[:1000]",
                args_for_task={
                    "metric": metric,
                    "input_column": "text",
                    "label_column": "label",
                    "label_mapping": {
                        "NO_HATE": 0.0,
                        "HATE": 1.0,
                        "RELATION": 1.0,
                        "IDK": 1.0
                    }
                }
            ),
            SubTask(
                task_type="text-classification",
                data="mteb/toxic_conversations_50k",
                split="test[:1000]",
                args_for_task={
                    "metric": metric, 
                    "input_column": "text",
                    "label_column": "label",
                    "label_mapping": {
                        "NO_HATE": 0.0,
                        "HATE": 1.0
                    }
                }
            )
        ]