Spaces:
Sleeping
Sleeping
File size: 10,153 Bytes
8495b01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import manganite\n",
"%load_ext manganite"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Airfoil Analysis\n",
"# with [AeroSandbox](https://github.com/peterdsharpe/AeroSandbox) and [Manganite](https://github.com/LCL-CAVE/manganite)\n",
"\n",
"## Description\n",
"\n",
"The Airfoil Design Demonstration Dashboard is a web-based showcase that provides a glimpse into the capabilities of airfoil analysis within a browser environment. It is built upon the open-source repository [AeroSandbox](https://github.com/peterdsharpe/Automotive-Airfoil-Design/) and serves as a demonstration of what's possible in the realm of virtual airfoil exploration.\n",
"\n",
"### Key Features\n",
"\n",
"1. **Geometry Visualization:** Explore an interactive airfoil geometry, pre-defined for demonstration purposes. Observe how changes in shape and size can impact aerodynamic behavior.\n",
"\n",
"2. **Simplified Angle of Attack:** Adjust the angle of attack within a limited range to see the immediate effects on lift and drag forces. \n",
"\n",
"3. **Kulfan Coordinates:** This demonstration employs Kulfan coordinates for the representation of airfoil shapes, providing insight into how airfoil data can be structured and analyzed.\n",
"\n",
"4. **Basic Constant Display:** View simplified constant values such as lift coefficient (CL), drag coefficient (CD), and moment coefficient (CM).\n",
"\n",
"5. **Visualization:** Visualize how changes in airfoil geometry and angle of attack influence aerodynamic characteristics."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"import aerosandbox as asb\n",
"import aerosandbox.numpy as np\n",
"import copy\n",
"import plotly.figure_factory as ff\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider -20:20:0.1 --tab \"Operating Conditions\" --header \"Angle of Attack\" --var alpha\n",
"alpha = 8.7"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"streamline_density = 1\n",
"height = 0\n",
"ground_effect = False"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider -0.1:0.7:0.01 --tab \"Shape Parameters\" --header \"Upper surface 1\" --var upper_1 --position 0 0 2\n",
"upper_1 = 0.25"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider -0.1:0.7:0.01 --tab \"Shape Parameters\" --header \"Upper surface 2\" --var upper_2 --position 0 2 2\n",
"upper_2 = 0.47"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider -0.1:0.7:0.01 --tab \"Shape Parameters\" --header \"Upper surface 3\" --var upper_3 --position 0 4 2\n",
"upper_3 = 0.024"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider -0.5:0.3:0.01 --tab \"Shape Parameters\" --header \"Lower surface 1\" --var lower_1 --position 1 0 2\n",
"lower_1 = -0.11"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider 0:0.7:0.01 --tab \"Shape Parameters\" --header \"Lower surface 2\" --var lower_2 --position 1 2 2\n",
"lower_2 = 0.06"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type slider 0:0.7:0.01 --tab \"Shape Parameters\" --header \"Lower surface 3\" --var lower_3 --position 1 4 2\n",
"lower_3 = -0.06"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def display_graph(n_clicks, alpha, height, streamline_density, kulfan_upper, kulfan_lower, analyze_button_pressed = False):\n",
"\n",
" ### Start constructing the figure\n",
" airfoil = asb.Airfoil(\n",
" coordinates=asb.get_kulfan_coordinates(\n",
" lower_weights=np.array(lower_values),\n",
" upper_weights=np.array(upper_values),\n",
" TE_thickness=0,\n",
" enforce_continuous_LE_radius=False,\n",
" n_points_per_side=200\n",
" )\n",
" )\n",
"\n",
" # ### Do coordinates output\n",
" # coordinates_output = \"\\n\".join(\n",
" # [\"```\"] +\n",
" # [\"AeroSandbox Airfoil\"] +\n",
" # [\"\\t%f\\t%f\" % tuple(coordinate) for coordinate in airfoil.coordinates] +\n",
" # [\"```\"]\n",
" # )\n",
"\n",
" ### Continue doing the airfoil things\n",
" airfoil = airfoil.rotate(angle=-np.radians(alpha))\n",
" airfoil = airfoil.translate(\n",
" 0,\n",
" height + 0.5 * np.sind(alpha)\n",
" )\n",
" fig = go.Figure()\n",
" fig.add_trace(\n",
" go.Scatter(\n",
" x=airfoil.x(),\n",
" y=airfoil.y(),\n",
" mode=\"lines\",\n",
" name=\"Airfoil\",\n",
" fill=\"toself\",\n",
" line=dict(\n",
" color=\"blue\"\n",
" )\n",
" )\n",
" )\n",
"\n",
" ### Default text output\n",
" text_output = 'Click \"Analyze\" to compute aerodynamics!'\n",
" output = text_output\n",
"\n",
" xrng = (-0.5, 1.5)\n",
" yrng = (-0.6, 0.6) if not ground_effect else (0, 1.2)\n",
"\n",
" if analyze_button_pressed:\n",
"\n",
" analysis = asb.AirfoilInviscid(\n",
" airfoil=airfoil.repanel(50),\n",
" op_point=asb.OperatingPoint(\n",
" velocity=1,\n",
" alpha=0,\n",
" ),\n",
" ground_effect=ground_effect\n",
" )\n",
"\n",
" x = np.linspace(*xrng, 100)\n",
" y = np.linspace(*yrng, 100)\n",
" X, Y = np.meshgrid(x, y)\n",
" u, v = analysis.calculate_velocity(\n",
" x_field=X.flatten(),\n",
" y_field=Y.flatten()\n",
" )\n",
" U = u.reshape(X.shape)\n",
" V = v.reshape(Y.shape)\n",
"\n",
" streamline_fig = ff.create_streamline(\n",
" x, y, U, V,\n",
" arrow_scale=1e-16,\n",
" density=streamline_density,\n",
" line=dict(\n",
" color=\"#ff82a3\"\n",
" ),\n",
" name=\"Streamlines\"\n",
" )\n",
"\n",
" fig = go.Figure(\n",
" data=streamline_fig.data + fig.data\n",
" )\n",
"\n",
" output = pd.DataFrame(\n",
" {\n",
" \"Engineering Quantity\": [\n",
" \"C_L\"\n",
" ],\n",
" \"Value\" : [\n",
" f\"{analysis.Cl:.3f}\"\n",
" ]\n",
" }\n",
" )\n",
"\n",
" fig.update_layout(\n",
" xaxis_title=\"x/c\",\n",
" yaxis_title=\"y/c\",\n",
" showlegend=False,\n",
" yaxis=dict(scaleanchor=\"x\", scaleratio=1),\n",
" margin={'t': 0},\n",
" title=None,\n",
" )\n",
"\n",
" fig.update_xaxes(range=xrng)\n",
" fig.update_yaxes(range=yrng)\n",
"\n",
" return fig, output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type plot --var aero_fig --tab \"Shape Parameters\" --header \"Airfoil Cross section\" --position 2 0 6\n",
"upper_values = [upper_1, upper_2,upper_3]\n",
"lower_values = [lower_1, lower_2, lower_3]\n",
"aero_fig, text_output = display_graph(1,alpha=alpha,height=0,streamline_density=streamline_density, kulfan_upper=upper_values, kulfan_lower=lower_values)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn execute --on button \"Analyze\" --returns aero_performance\n",
"\n",
"aero_fig_lines, aero_performance = display_graph(1,alpha=alpha,height=0,streamline_density=streamline_density, kulfan_upper=upper_values, kulfan_lower=lower_values, analyze_button_pressed = True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type plot --var aero_fig_lines --tab \"Aerodynamic Performance\" --header \"Streamlines\" --position 0 0 6\n",
"\n",
"simu_ready = aero_performance\n",
"aero_fig_lines\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type table --tab \"Aerodynamic Performance\" --position 1 2 4 --header \"Metrics\" --var performance_values\n",
"\n",
"performance_values = aero_performance"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "manganite-env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|