File size: 6,701 Bytes
65e8b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import manganite\n",
    "%load_ext manganite"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# CO2 Emission Dashboard\n",
    "\n",
    "## Overview\n",
    "This CO2 emission dashboard provides valuable insights into global carbon dioxide emissions. It features three distinct plots that help users explore emissions data by continents and countries. Additionally, it allows users to filter emissions by their source type. \n",
    "\n",
    "## Plots\n",
    "\n",
    "### Plot 1: CO2 Emission Over Time (Continents)\n",
    "- **Description:** This line plot illustrates the trends in CO2 emissions over time for different continents.\n",
    "\n",
    "### Plot 2: CO2 Emission vs. GDP per Capita (Countries)\n",
    "- **Description:** This scatter plot allows users to explore the relationship between CO2 emissions and GDP per capita for individual countries.\n",
    "\n",
    "### Plot 3: CO2 Emission by Continent (Filtered by Source)\n",
    "- **Description:** This bar chart provides a breakdown of CO2 emissions for each continent, allowing users to filter emissions by source type.\n",
    "\n",
    "## Technologies Used\n",
    "- Programming Language: Python\n",
    "- Data Visualization Library: Plotly\n",
    "\n",
    "## Data Source\n",
    "The data used in this dashboard is sourced from [Our World in Data](https://ourworldindata.org).\n",
    "\n",
    "## GitHub Repository\n",
    "This project is based on the following GitHub repository: [GitHub Repo](https://github.com/thu-vu92/python-dashboard-panel/tree/main)\n",
    "\n",
    "Explore and analyze global CO2 emissions with this interactive dashboard. Select plots and filters to gain insights into the environmental impact and economic factors related to emissions worldwide.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import the Python packages\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import plotly.express as px\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "try:\n",
    "    df = pd.read_csv('owid-co2-data.csv')\n",
    "except:\n",
    "    df = pd.read_csv('https://raw.githubusercontent.com/owid/co2-data/master/owid-co2-data.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Fill NAs with 0s and create GDP per capita column\n",
    "df = df.fillna(0)\n",
    "df['gdp_per_capita'] = np.where(df['population']!= 0, df['gdp']/ df['population'], 0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Add slider"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%mnn widget --type slider 1900:2015:5 --tab \"Emission\" --header \"Year\" --var year_slider\n",
    "year_slider = 2010"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# add selector\n",
    "options=['co2', 'co2_per_capita']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%mnn widget --type radio options --tab \"Emission\" --header \"Y - axis\" --var yaxis_co2\n",
    "yaxis_co2 = options[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#  Continent Selector\n",
    "continents = ['World', 'Asia', 'Oceania', 'Europe', 'Africa', 'North America', 'South America', 'Antarctica']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# %%mnn widget --type select continents --tab \"Emission\" --header \"Select Continent\" --var continent --position 1 1 4\n",
    "# continent = continents[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%mnn widget --type plot --var fig_0 --tab \"Emission\" --header \"CO2 Emission by continent\"\n",
    "# Adding chart 0\n",
    "df_0 = df[(df['year'] <= year_slider) & (df['year'] >= 1890) &  (df['country'].isin(continents))]\n",
    "fig_0 = px.line(df_0, x='year', y= yaxis_co2, color='country')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# fig_0.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%mnn widget --type plot --var fig_1     --tab \"Emission\" --header \"CO2 vs GDP\"\n",
    "\n",
    "df_1 = df[(df['year'] == year_slider) &  (-df['country'].isin(continents)) & (df['gdp_per_capita'] != 0)& (df['co2_per_capita'] != 0)& (df['co2'] != 0)]\n",
    "fig_1 = px.scatter(df_1, x=\"gdp_per_capita\", y= yaxis_co2 , hover_data = \"country\")\n",
    "# fig_1.update_traces(textposition=\"top right\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# fig_1.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "emission_types=['coal_co2', 'oil_co2', 'gas_co2']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%mnn widget --type select emission_types --tab \"Emission\" --header \"Select Emission Source\" --var source --position -1 0 1\n",
    "source = emission_types[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%mnn widget --type plot --var fig_2  --tab \"Emission\" --header \"CO2 source by continent\"  --position -1 1 4\n",
    "\n",
    "df_2 = df[(df['year'] == year_slider) &  (df['country'].isin(continents))]\n",
    "\n",
    "fig_2 = px.bar(df_2, x='country' , y = source)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "manganite-env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}