Spaces:
Runtime error
Runtime error
File size: 11,601 Bytes
12a852f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import manganite\n",
"%load_ext manganite"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Portfolio Selection Optimization\n",
"This model is an example of the classic [Markowitz portfolio selection optimization model](https://en.wikipedia.org/wiki/Markowitz_model). We want to find the fraction of the portfolio to invest among a set of stocks that balances risk and return. It is a Quadratic Programming (QP) model with vector and matrix data for returns and risk, respectively. This is best suited to a matrix formulation, so we use the Gurobi Python *matrix* interface. The basic model is fairly simple, so we also solve it parametrically to find the efficient frontier.\n",
"\n",
"**Download the Repository** <br /> \n",
"You can download the repository containing this and other examples by clicking [here](https://github.com/Gurobi/modeling-examples/archive/master.zip). \n",
"\n",
"**Gurobi License** <br /> \n",
"In order to run this Jupyter Notebook properly, you must have a Gurobi license. If you do not have one, you can request an [evaluation license](https://www.gurobi.com/downloads/request-an-evaluation-license/?utm_source=3PW&utm_medium=OT&utm_campaign=WW-MU-MUI-OR-O_LEA-PR_NO-Q3_FY20_WW_JPME_Lost_Luggage_Distribution_COM_EVAL_GitHub&utm_term=Lost%20Luggage%20Distribution&utm_content=C_JPM) as a *commercial user*, or download a [free license](https://www.gurobi.com/academia/academic-program-and-licenses/?utm_source=3PW&utm_medium=OT&utm_campaign=WW-MU-EDU-OR-O_LEA-PR_NO-Q3_FY20_WW_JPME_Lost_Luggage_Distribution_COM_EVAL_GitHub&utm_term=Lost%20Luggage%20Distribution&utm_content=C_JPM) as an *academic user*.\n",
"\n",
"\n",
"## Model Formulation\n",
"### Parameters\n",
"\n",
"We use the [Greek values](https://en.wikipedia.org/wiki/Greeks_\\(finance\\)) that are traditional in finance:\n",
"\n",
"- $$ \\delta $$: n-element vector measuring the change in price for each stock\n",
"- $$ \\sigma $$: n x n matrix measuring the covariance among stocks\n",
"\n",
"There is one additional parameter when solving the model parametrically:\n",
"\n",
"- r: target return\n",
"\n",
"\n",
"### Decision Variables\n",
"- $$ x \\ge 0 $$ : n-element vector where each element represents the fraction of the porfolio to invest in each stock\n",
"\n",
"### Objective Function\n",
"Minimize the total risk, a convex quadratic function:\n",
"<pre>\n",
"$$\n",
"\\begin{equation}\n",
"\\min x^t \\cdot \\sigma \\cdot x\n",
"\\end{equation}\n",
"$$\n",
"</pre>\n",
"\n",
"### Constraints\n",
"\n",
"Allocate the entire portfolio: the total investments should be 1.0 (100%), where $e$ is a unit vector (all 1's):\n",
"<pre>\n",
"$$\n",
"\\begin{equation}\n",
"e \\cdot x = 1\n",
"\\end{equation}\n",
"$$\n",
"</pre>\n",
"Return: When we solve the model parametrically for different return values $r$, we add a constraint on the target return:\n",
"<pre>\n",
"$$\n",
"\\begin{equation}\n",
"\\delta \\cdot x = r\n",
"\\end{equation}\n",
"$$\n",
"</pre>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Python Implementation\n",
"### Stock data\n",
"Use [yfinance](https://pypi.org/project/yfinance/) library to get the latest 2 years of _actual stock data_ from the 20 most profitable US companies, [according to Wikipedia in April 2021](https://en.wikipedia.org/wiki/List_of_largest_companies_in_the_United_States_by_revenue#List_of_companies_by_profit).\n",
"### Dashboard\n",
"Use manganite package to create a beautiful dashoard from the jupyter notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import yfinance as yf\n",
"import numpy as np\n",
"\n",
"import gurobipy as gp\n",
"from gurobipy import GRB\n",
"from math import sqrt\n",
"\n",
"import pandas as pd\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"\n",
"import plotly.io as pio\n",
"pio.templates.default = 'plotly_white'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type text --tab \"Stock Selector\" --header \"Select your stocks\" --var stocks --position 0 0 3\n",
"stocks = 'AAPL, MSFT, JPM, GOOG, BAC, INTC, WFC, Meta'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Split the input string into a list using the column separator\n",
"tick_marks_list = stocks.split(',')\n",
"\n",
"# Remove unwanted characters and spaces from each element\n",
"clean_tick_marks = [tick.strip() for tick in tick_marks_list]\n",
"\n",
"data = yf.download(clean_tick_marks, period='2y')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type plot --var fig_stocks --tab \"Stock Selector\" --position 1 0 4 --header \"Stock prices\"\n",
"\n",
"df_closing = data['Close']\n",
"fig_stocks = px.line(df_closing, x=df_closing.index, y=df_closing.columns,\n",
" # hover_data={\"date\": \"|%B %d, %Y\"},\n",
" )\n",
"\n",
"# Update the layout to customize axis labels\n",
"fig_stocks.update_yaxes(title_text='Stock Price ($)')\n",
"\n",
"fig_stocks.update_xaxes(\n",
" title_text='',\n",
" dtick=\"M1\",\n",
" tickformat=\"%b\\n%Y\",\n",
" ticklabelmode=\"period\")\n",
"\n",
"fig_stocks.update_layout(legend_title=\"Stock\",)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn execute --on button \"Optimize Portfolio\" --returns solution\n",
"\n",
"#calculating greeks\n",
"closes = np.transpose(np.array(data.Close)) # matrix of daily closing prices\n",
"absdiff = np.diff(closes) # change in closing price each day\n",
"reldiff = np.divide(absdiff, closes[:,:-1]) # relative change in daily closing price\n",
"delta = np.mean(reldiff, axis=1) # mean price change\n",
"sigma = np.cov(reldiff) # covariance (standard deviations)\n",
"std = np.std(reldiff, axis=1) # standard deviation\n",
"df_plot = pd.DataFrame({'std': std, 'delta': delta, 'stocks':clean_tick_marks})\n",
"print('solving QP model')\n",
"# Create an empty model\n",
"m = gp.Model('portfolio')\n",
"\n",
"# Add matrix variable for the stocks\n",
"x = m.addMVar(len(clean_tick_marks))\n",
"\n",
"# Objective is to minimize risk (squared). This is modeled using the\n",
"# covariance matrix, which measures the historical correlation between stocks\n",
"portfolio_risk = x @ sigma @ x\n",
"m.setObjective(portfolio_risk, GRB.MINIMIZE)\n",
"\n",
"# Fix budget with a constraint\n",
"m.addConstr(x.sum() == 1, 'budget')\n",
"\n",
"# Verify model formulation\n",
"# m.write('portfolio_selection_optimization.lp')\n",
"\n",
"# Optimize model to find the minimum risk portfolio\n",
"m.optimize()\n",
"\n",
"minrisk_volatility = sqrt(m.ObjVal)\n",
"minrisk_return = delta @ x.X\n",
"\n",
"# Create an expression representing the expected return for the portfolio\n",
"portfolio_return = delta @ x\n",
"\n",
"target = m.addConstr(portfolio_return == minrisk_return, 'target')\n",
"\n",
"# solution = pd.DataFrame(data=np.append(x.X, [minrisk_volatility, minrisk_return]),\n",
"# index=clean_tick_marks + ['Volatility', 'Expected Return'],\n",
"# columns=['Minimum Risk Portfolio'])\n",
"\n",
"solution = pd.DataFrame(data=x.X,\n",
" index=clean_tick_marks,\n",
" columns=['Minimum Risk Portfolio'])\n",
"\n",
"exp_return = minrisk_return\n",
"exp_volatility = minrisk_volatility\n",
"\n",
"# Solve for efficient frontier by varying target return\n",
"frontier = np.empty((2,0))\n",
"for r in np.linspace(delta.min(), delta.max(), 25):\n",
" target.rhs = r\n",
" m.optimize()\n",
" frontier = np.append(frontier, [[sqrt(m.ObjVal)],[r]], axis=1)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type plot --var fig_bar --tab \"Portfolio\" --position 0 0 3 --header \"Minimum Risk Portfolio\"\n",
"# Create a pie chart\n",
"fig_pie = px.pie(solution, values='Minimum Risk Portfolio', names=solution.index,\n",
" title=f'Your Portfolio Distribution<br>Expected Return: {round(exp_return,6)}<br>Volatility: {round(exp_volatility,4)}')\n",
"fig_pie.update_traces(textposition='inside', textinfo='percent+label')\n",
"\n",
"# Create a bar chart\n",
"fig_bar = px.bar(solution, x=solution.index, y='Minimum Risk Portfolio',\n",
"title=f'Your Portfolio Distribution<br>Expected Return: {round(exp_return,6)}<br>Volatility: {round(exp_volatility,4)}',\n",
")\n",
"\n",
"# Hide x-axis and y-axis labels\n",
"fig_bar.update_xaxes(title_text='')\n",
"fig_bar.update_yaxes(title_text='')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%mnn widget --type plot --var fig --tab \"Portfolio\" --position 0 3 3 --header \"Efficient Frontier\"\n",
"\n",
"update = solution\n",
"# Plot volatility versus expected return for individual stocks\n",
"fig1 = px.scatter(df_plot, x=\"std\", y=\"delta\" ,\n",
" labels = { \"std\": \"Volatility (standard deviation)\", \"delta\": \"Expected Return\"}, text=\"stocks\" )\n",
"fig1.update_traces(textposition=\"bottom right\")\n",
"\n",
"# Plot volatility versus expected return for minimum risk portfolio\n",
"\n",
"fig2 = px.scatter(x=[minrisk_volatility], y=[minrisk_return],text = [\"Minimum Risk<br>Portfolio\"])\n",
"fig2.update_traces(textposition=\"bottom right\")\n",
"fig = go.Figure(data=fig1.data + fig2.data)\n",
"\n",
"# Plot efficient frontier\n",
"\n",
"fig.add_trace(go.Scatter(x=frontier[0], y=frontier[1], mode='lines', name='Efficient Frontier'))\n",
"\n",
"# Set x and y labels using update_xaxes and update_yaxes\n",
"fig.update_xaxes(title_text=\"Volatility (standard deviation)\")\n",
"fig.update_yaxes(title_text=\"Expected Return\")\n",
"\n",
"fig.update_layout(legend=dict(\n",
" yanchor=\"bottom\",\n",
" y=0.01,\n",
" xanchor=\"right\",\n",
" x=0.99\n",
"))\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|