File size: 2,929 Bytes
6ebb80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from transformers import pipeline
from tqdm import tqdm
import pandas as pd
import streamlit as st
from io import StringIO


def correct_text(uploaded_file, column_to_correct):
    """
    Corrects text in the specified column using a text correction model.

    Args:
        uploaded_file: DataFrame containing the text to correct
        column_to_correct: Index of the column to correct
    Returns:
        DataFrame with corrected text in a new column
    """
    corrector = pipeline("text2text-generation",
                         model="sdadas/byt5-text-correction")

    df = uploaded_file
    progress_bar = st.progress(0)
    status_text = st.text("Correcting text 🧠...")

    for index, row in df.iterrows():
        if pd.notna(row.iloc[column_to_correct]):
            original_text = str(row.iloc[column_to_correct])
            corrected_text = corrector(
                "<es>" + original_text, max_length=1024)[0]['generated_text']

            # Save corrected text only if different from original
            if corrected_text != original_text:
                df.loc[index, column_to_correct + 1] = corrected_text

        progress = (index + 1) / len(df)
        progress_bar.progress(progress)
        status_text.text(f"Progress: {int(progress * 100)}% completed ")

    return df


def choose_columns(dataframe):
    """
    Lets user select columns to correct and displays preview of data.

    Args:
        dataframe: Input DataFrame
    Returns:
        Selected column index or None if no selection
    """
    st.write("Choose the columns to correct 🔍")
    column_to_correct = st.selectbox(
        "Select columns to correct", dataframe.columns)

    if column_to_correct:
        st.write("Preview of data in selected columns 👀:")
        non_empty_data = dataframe[dataframe[column_to_correct].notna()]
        st.dataframe(non_empty_data[column_to_correct].head())

    if st.button("Correct Text"):
        if column_to_correct is not None:
            return dataframe.columns.get_loc(column_to_correct)
        else:
            st.error("Please select a column before correcting text ❌")
            return None


def main():
    """Main function to run the text correction application"""
    st.title("CSV text Correction App ✔")
    uploaded_file = st.file_uploader("Choose a CSV file 📄", type=["csv"])
    if uploaded_file is not None:
        try:
            dataframe = pd.read_csv(uploaded_file, encoding='utf-8')
            column_index = choose_columns(dataframe)
            if column_index is not None:
                st.write(correct_text(dataframe, column_index))
        except UnicodeDecodeError:
            st.error(
                "Error: Unable to decode the file. Please check the file encoding or try another file.")
        except Exception as e:
            st.error(f"An unexpected error occurred: {e}")


if __name__ == "__main__":
    main()