from transformers import pipeline from tqdm import tqdm import pandas as pd import streamlit as st from io import StringIO def correct_text(uploaded_file, column_to_correct): """ Corrects text in the specified column using a text correction model. Args: uploaded_file: DataFrame containing the text to correct column_to_correct: Index of the column to correct Returns: DataFrame with corrected text in a new column """ corrector = pipeline("text2text-generation", model="sdadas/byt5-text-correction") df = uploaded_file progress_bar = st.progress(0) status_text = st.text("Correcting text 🧠...") for index, row in df.iterrows(): if pd.notna(row.iloc[column_to_correct]): original_text = str(row.iloc[column_to_correct]) corrected_text = corrector( "" + original_text, max_length=1024)[0]['generated_text'] # Save corrected text only if different from original if corrected_text != original_text: df.loc[index, column_to_correct + 1] = corrected_text progress = (index + 1) / len(df) progress_bar.progress(progress) status_text.text(f"Progress: {int(progress * 100)}% completed ") return df def choose_columns(dataframe): """ Lets user select columns to correct and displays preview of data. Args: dataframe: Input DataFrame Returns: Selected column index or None if no selection """ st.write("Choose the columns to correct 🔍") column_to_correct = st.selectbox( "Select columns to correct", dataframe.columns) if column_to_correct: st.write("Preview of data in selected columns 👀:") non_empty_data = dataframe[dataframe[column_to_correct].notna()] st.dataframe(non_empty_data[column_to_correct].head()) if st.button("Correct Text"): if column_to_correct is not None: return dataframe.columns.get_loc(column_to_correct) else: st.error("Please select a column before correcting text ❌") return None def main(): """Main function to run the text correction application""" st.title("CSV text Correction App ✔") uploaded_file = st.file_uploader("Choose a CSV file 📄", type=["csv"]) if uploaded_file is not None: try: dataframe = pd.read_csv(uploaded_file, encoding='utf-8') column_index = choose_columns(dataframe) if column_index is not None: st.write(correct_text(dataframe, column_index)) except UnicodeDecodeError: st.error( "Error: Unable to decode the file. Please check the file encoding or try another file.") except Exception as e: st.error(f"An unexpected error occurred: {e}") if __name__ == "__main__": main()