File size: 7,015 Bytes
5264d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5966251
5264d3a
 
5966251
 
 
5264d3a
 
 
 
5966251
 
 
5264d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5966251
5264d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5966251
5264d3a
 
5966251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5264d3a
5966251
 
 
 
 
 
 
 
 
5264d3a
5966251
5264d3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

from hierarchicalsoftmax import HierarchicalSoftmaxLoss
import evaluate
import datasets
import pickle
import torch
import torch.nn as nn

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {Hierarchical Softmax Loss},
authors={Danieldux},
year={2023}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class HierarchicalISCOSoftmaxLoss(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('int64'),
                'references': datasets.Value('int64'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download ISCO hierachical metadata
        pass



class HierarchicalLossNetwork:
    """Logics to calculate the loss of the model.
    """

    def __init__(self, metafile_path, hierarchical_labels, device='cpu', total_level=2, alpha=1, beta=0.8, p_loss=3):
        """Param init.
        """
        self.total_level = total_level
        self.alpha = alpha
        self.beta = beta
        self.p_loss = p_loss
        self.device = device
        self.level_one_labels, self.level_two_labels, self.level_three_labels, self.level_four_labels = read_meta(metafile=metafile_path)
        self.hierarchical_labels = hierarchical_labels
        self.numeric_hierarchy = self.words_to_indices()

    def read_meta(metafile):
        """Read the meta file and return the coarse and fine labels.
        """
        # TODO: Replace with metadata from the dataset
        meta_data = unpickle(metafile)
        fine_label_names = [t.decode('utf8') for t in meta_data[b'fine_label_names']]
        coarse_label_names = [t.decode('utf8') for t in meta_data[b'coarse_label_names']]
        return coarse_label_names, fine_label_names

    def hierarchical_softmax_loss_fn(logits: torch.Tensor, labels: torch.Tensor, root) -> torch.Tensor:
        loss = HierarchicalSoftmaxLoss(root=root)
        return loss(logits, labels)

    def words_to_indices(self):
        """Convert the classes from words to indices."""
        numeric_hierarchy = {}
        for k, v in self.hierarchical_labels.items():
            numeric_hierarchy[self.level_one_labels.index(k)] = [self.level_two_labels.index(i) for i in v]

        return numeric_hierarchy


    def check_hierarchy(self, current_level, previous_level):
        """
        Check if the predicted class at level l is a child of the class predicted at level l-1 for the entire batch.
        """

        #check using the dictionary whether the current level's prediction belongs to the superclass (prediction from the prev layer)
        bool_tensor = [not current_level[i] in self.numeric_hierarchy[previous_level[i].item()] for i in range(previous_level.size()[0])]

        return torch.FloatTensor(bool_tensor).to(self.device)


    def calculate_lloss(self, predictions, true_labels):
        """Calculates the layer loss."""

        lloss = 0
        for l in range(self.total_level):

            lloss += nn.CrossEntropyLoss()(predictions[l], true_labels[l])

        return self.alpha * lloss


    def calculate_dloss(self, predictions, true_labels):
        """Calculate the dependence loss."""

        dloss = 0
        for l in range(1, self.total_level):

            current_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l]), dim=1)
            prev_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l-1]), dim=1)

            D_l = self.check_hierarchy(current_lvl_pred, prev_lvl_pred)

            l_prev = torch.where(prev_lvl_pred == true_labels[l-1], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device))
            l_curr = torch.where(current_lvl_pred == true_labels[l], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device))

            dloss += torch.sum(torch.pow(self.p_loss, D_l*l_prev)*torch.pow(self.p_loss, D_l*l_curr) - 1)

        return self.beta * dloss


    def _compute(self, predictions, references):
        """Returns the accuracy score of the prediction"""

        num_data = references.size()[0]
        predicted = torch.argmax(predictions, dim=1)

        correct_pred = torch.sum(predicted == references)

        accuracy = correct_pred*(100/num_data)

        return {
            "accuracy": accuracy.item(),
        }