Spaces:
Sleeping
Sleeping
File size: 7,015 Bytes
5264d3a 5966251 5264d3a 5966251 5264d3a 5966251 5264d3a 5966251 5264d3a 5966251 5264d3a 5966251 5264d3a 5966251 5264d3a 5966251 5264d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from hierarchicalsoftmax import HierarchicalSoftmaxLoss
import evaluate
import datasets
import pickle
import torch
import torch.nn as nn
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {Hierarchical Softmax Loss},
authors={Danieldux},
year={2023}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class HierarchicalISCOSoftmaxLoss(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('int64'),
'references': datasets.Value('int64'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download ISCO hierachical metadata
pass
class HierarchicalLossNetwork:
"""Logics to calculate the loss of the model.
"""
def __init__(self, metafile_path, hierarchical_labels, device='cpu', total_level=2, alpha=1, beta=0.8, p_loss=3):
"""Param init.
"""
self.total_level = total_level
self.alpha = alpha
self.beta = beta
self.p_loss = p_loss
self.device = device
self.level_one_labels, self.level_two_labels, self.level_three_labels, self.level_four_labels = read_meta(metafile=metafile_path)
self.hierarchical_labels = hierarchical_labels
self.numeric_hierarchy = self.words_to_indices()
def read_meta(metafile):
"""Read the meta file and return the coarse and fine labels.
"""
# TODO: Replace with metadata from the dataset
meta_data = unpickle(metafile)
fine_label_names = [t.decode('utf8') for t in meta_data[b'fine_label_names']]
coarse_label_names = [t.decode('utf8') for t in meta_data[b'coarse_label_names']]
return coarse_label_names, fine_label_names
def hierarchical_softmax_loss_fn(logits: torch.Tensor, labels: torch.Tensor, root) -> torch.Tensor:
loss = HierarchicalSoftmaxLoss(root=root)
return loss(logits, labels)
def words_to_indices(self):
"""Convert the classes from words to indices."""
numeric_hierarchy = {}
for k, v in self.hierarchical_labels.items():
numeric_hierarchy[self.level_one_labels.index(k)] = [self.level_two_labels.index(i) for i in v]
return numeric_hierarchy
def check_hierarchy(self, current_level, previous_level):
"""
Check if the predicted class at level l is a child of the class predicted at level l-1 for the entire batch.
"""
#check using the dictionary whether the current level's prediction belongs to the superclass (prediction from the prev layer)
bool_tensor = [not current_level[i] in self.numeric_hierarchy[previous_level[i].item()] for i in range(previous_level.size()[0])]
return torch.FloatTensor(bool_tensor).to(self.device)
def calculate_lloss(self, predictions, true_labels):
"""Calculates the layer loss."""
lloss = 0
for l in range(self.total_level):
lloss += nn.CrossEntropyLoss()(predictions[l], true_labels[l])
return self.alpha * lloss
def calculate_dloss(self, predictions, true_labels):
"""Calculate the dependence loss."""
dloss = 0
for l in range(1, self.total_level):
current_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l]), dim=1)
prev_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l-1]), dim=1)
D_l = self.check_hierarchy(current_lvl_pred, prev_lvl_pred)
l_prev = torch.where(prev_lvl_pred == true_labels[l-1], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device))
l_curr = torch.where(current_lvl_pred == true_labels[l], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device))
dloss += torch.sum(torch.pow(self.p_loss, D_l*l_prev)*torch.pow(self.p_loss, D_l*l_curr) - 1)
return self.beta * dloss
def _compute(self, predictions, references):
"""Returns the accuracy score of the prediction"""
num_data = references.size()[0]
predicted = torch.argmax(predictions, dim=1)
correct_pred = torch.sum(predicted == references)
accuracy = correct_pred*(100/num_data)
return {
"accuracy": accuracy.item(),
} |