Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
from hierarchicalsoftmax import HierarchicalSoftmaxLoss | |
import evaluate | |
import datasets | |
import pickle | |
import torch | |
import torch.nn as nn | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {Hierarchical Softmax Loss}, | |
authors={Danieldux}, | |
year={2023} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class HierarchicalISCOSoftmaxLoss(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value('int64'), | |
'references': datasets.Value('int64'), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download ISCO hierachical metadata | |
pass | |
class HierarchicalLossNetwork: | |
"""Logics to calculate the loss of the model. | |
""" | |
def __init__(self, metafile_path, hierarchical_labels, device='cpu', total_level=2, alpha=1, beta=0.8, p_loss=3): | |
"""Param init. | |
""" | |
self.total_level = total_level | |
self.alpha = alpha | |
self.beta = beta | |
self.p_loss = p_loss | |
self.device = device | |
self.level_one_labels, self.level_two_labels, self.level_three_labels, self.level_four_labels = read_meta(metafile=metafile_path) | |
self.hierarchical_labels = hierarchical_labels | |
self.numeric_hierarchy = self.words_to_indices() | |
def read_meta(metafile): | |
"""Read the meta file and return the coarse and fine labels. | |
""" | |
# TODO: Replace with metadata from the dataset | |
meta_data = unpickle(metafile) | |
fine_label_names = [t.decode('utf8') for t in meta_data[b'fine_label_names']] | |
coarse_label_names = [t.decode('utf8') for t in meta_data[b'coarse_label_names']] | |
return coarse_label_names, fine_label_names | |
def hierarchical_softmax_loss_fn(logits: torch.Tensor, labels: torch.Tensor, root) -> torch.Tensor: | |
loss = HierarchicalSoftmaxLoss(root=root) | |
return loss(logits, labels) | |
def words_to_indices(self): | |
"""Convert the classes from words to indices.""" | |
numeric_hierarchy = {} | |
for k, v in self.hierarchical_labels.items(): | |
numeric_hierarchy[self.level_one_labels.index(k)] = [self.level_two_labels.index(i) for i in v] | |
return numeric_hierarchy | |
def check_hierarchy(self, current_level, previous_level): | |
""" | |
Check if the predicted class at level l is a child of the class predicted at level l-1 for the entire batch. | |
""" | |
#check using the dictionary whether the current level's prediction belongs to the superclass (prediction from the prev layer) | |
bool_tensor = [not current_level[i] in self.numeric_hierarchy[previous_level[i].item()] for i in range(previous_level.size()[0])] | |
return torch.FloatTensor(bool_tensor).to(self.device) | |
def calculate_lloss(self, predictions, true_labels): | |
"""Calculates the layer loss.""" | |
lloss = 0 | |
for l in range(self.total_level): | |
lloss += nn.CrossEntropyLoss()(predictions[l], true_labels[l]) | |
return self.alpha * lloss | |
def calculate_dloss(self, predictions, true_labels): | |
"""Calculate the dependence loss.""" | |
dloss = 0 | |
for l in range(1, self.total_level): | |
current_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l]), dim=1) | |
prev_lvl_pred = torch.argmax(nn.Softmax(dim=1)(predictions[l-1]), dim=1) | |
D_l = self.check_hierarchy(current_lvl_pred, prev_lvl_pred) | |
l_prev = torch.where(prev_lvl_pred == true_labels[l-1], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device)) | |
l_curr = torch.where(current_lvl_pred == true_labels[l], torch.FloatTensor([0]).to(self.device), torch.FloatTensor([1]).to(self.device)) | |
dloss += torch.sum(torch.pow(self.p_loss, D_l*l_prev)*torch.pow(self.p_loss, D_l*l_curr) - 1) | |
return self.beta * dloss | |
def _compute(self, predictions, references): | |
"""Returns the accuracy score of the prediction""" | |
num_data = references.size()[0] | |
predicted = torch.argmax(predictions, dim=1) | |
correct_pred = torch.sum(predicted == references) | |
accuracy = correct_pred*(100/num_data) | |
return { | |
"accuracy": accuracy.item(), | |
} |