Spaces:
Build error
Build error
File size: 45,025 Bytes
e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd e847a58 a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd bd9a05a a5b84dd e847a58 a5b84dd e847a58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ISCO-08 hierarchical accuracy measure"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ISCO CSV file downloaded\n",
"Weighted ISCO hierarchy dictionary created as isco_hierarchy\n",
"\n",
"The ISCO-08 Hierarchical Accuracy Measure is an implementation of the measure described in [Functional Annotation of Genes Using Hierarchical Text Categorization](https://www.researchgate.net/publication/44046343_Functional_Annotation_of_Genes_Using_Hierarchical_Text_Categorization) (Kiritchenko, Svetlana and Famili, Fazel. 2005) and adapted for the ISCO-08 classification scheme by the International Labour Organization.\n",
"\n",
"The measure rewards more precise classifications that correctly identify an occupation's placement down to the specific Unit group level and applies penalties for misclassifications based on the hierarchical distance between the correct and assigned categories.\n",
"\n",
"\n"
]
}
],
"source": [
"import evaluate\n",
"\n",
"ham = evaluate.load(\"/home/dux/workspace/1-IEA_RnD/isco_hierarchical_accuracy\")\n",
"print(ham.description)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"References: ['1111', '1112', '1113', '1114', '1120']\n",
"Predictions: ['1111', '1113', '1120', '1211', '2111']\n",
"Accuracy: 0.2, Hierarchical Precision: 0.5, Hierarchical Recall: 0.7777777777777778, Hierarchical F-measure: 0.6086956521739131\n",
"{'accuracy': 0.2, 'hierarchical_precision': 0.5, 'hierarchical_recall': 0.7777777777777778, 'hierarchical_fmeasure': 0.6086956521739131}\n"
]
}
],
"source": [
"references = [\"1111\", \"1112\", \"1113\", \"1114\", \"1120\"]\n",
"predictions = [\"1111\", \"1113\", \"1120\", \"1211\", \"2111\"]\n",
"\n",
"print(f\"References: {references}\")\n",
"print(f\"Predictions: {predictions}\")\n",
"print(ham.compute(references=references, predictions=predictions))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"TEST CASE #1\n",
"References: ['1111', '1111', '1111', '1111', '1111', '1111', '1111', '1111', '1111', '1111']\n",
"Predictions: ['1111', '1112', '1120', '1211', '1311', '2111', '111', '11', '1', '9999']\n",
"Accuracy: 0.1, Hierarchical Precision: 0.2222222222222222, Hierarchical Recall: 1.0, Hierarchical F-measure: 0.3636363636363636\n",
"{'accuracy': 0.1, 'hierarchical_precision': 0.2222222222222222, 'hierarchical_recall': 1.0, 'hierarchical_fmeasure': 0.3636363636363636}\n",
"\n",
"TEST CASE #2\n",
"References: ['1111']\n",
"Predictions: ['1111']\n",
"Accuracy: 1.0, Hierarchical Precision: 1.0, Hierarchical Recall: 1.0, Hierarchical F-measure: 1.0\n",
"{'accuracy': 1.0, 'hierarchical_precision': 1.0, 'hierarchical_recall': 1.0, 'hierarchical_fmeasure': 1.0}\n",
"\n",
"TEST CASE #3\n",
"References: ['1111']\n",
"Predictions: ['1112']\n",
"Accuracy: 0.0, Hierarchical Precision: 0.75, Hierarchical Recall: 0.75, Hierarchical F-measure: 0.75\n",
"{'accuracy': 0.0, 'hierarchical_precision': 0.75, 'hierarchical_recall': 0.75, 'hierarchical_fmeasure': 0.75}\n",
"\n",
"TEST CASE #4\n",
"References: ['1111']\n",
"Predictions: ['1120']\n",
"Accuracy: 0.0, Hierarchical Precision: 0.5, Hierarchical Recall: 0.5, Hierarchical F-measure: 0.5\n",
"{'accuracy': 0.0, 'hierarchical_precision': 0.5, 'hierarchical_recall': 0.5, 'hierarchical_fmeasure': 0.5}\n",
"\n",
"TEST CASE #5\n",
"References: ['1111']\n",
"Predictions: ['1211']\n",
"Accuracy: 0.0, Hierarchical Precision: 0.25, Hierarchical Recall: 0.25, Hierarchical F-measure: 0.25\n",
"{'accuracy': 0.0, 'hierarchical_precision': 0.25, 'hierarchical_recall': 0.25, 'hierarchical_fmeasure': 0.25}\n",
"\n",
"TEST CASE #6\n",
"References: ['1111']\n",
"Predictions: ['1311']\n",
"Accuracy: 0.0, Hierarchical Precision: 0.25, Hierarchical Recall: 0.25, Hierarchical F-measure: 0.25\n",
"{'accuracy': 0.0, 'hierarchical_precision': 0.25, 'hierarchical_recall': 0.25, 'hierarchical_fmeasure': 0.25}\n",
"\n",
"TEST CASE #7\n",
"References: ['1111']\n",
"Predictions: ['2111']\n",
"Accuracy: 0.0, Hierarchical Precision: 0.0, Hierarchical Recall: 0.0, Hierarchical F-measure: 0\n",
"{'accuracy': 0.0, 'hierarchical_precision': 0.0, 'hierarchical_recall': 0.0, 'hierarchical_fmeasure': 0}\n",
"\n",
"TEST CASE #8\n",
"References: ['1111']\n",
"Predictions: ['111']\n",
"Accuracy: 0.0, Hierarchical Precision: 1.0, Hierarchical Recall: 0.25, Hierarchical F-measure: 0.4\n",
"{'accuracy': 0.0, 'hierarchical_precision': 1.0, 'hierarchical_recall': 0.25, 'hierarchical_fmeasure': 0.4}\n",
"\n",
"TEST CASE #9\n",
"References: ['1111']\n",
"Predictions: ['11']\n",
"Accuracy: 0.0, Hierarchical Precision: 1.0, Hierarchical Recall: 0.25, Hierarchical F-measure: 0.4\n",
"{'accuracy': 0.0, 'hierarchical_precision': 1.0, 'hierarchical_recall': 0.25, 'hierarchical_fmeasure': 0.4}\n",
"\n",
"TEST CASE #10\n",
"References: ['1111']\n",
"Predictions: ['1']\n",
"Accuracy: 0.0, Hierarchical Precision: 1.0, Hierarchical Recall: 0.25, Hierarchical F-measure: 0.4\n",
"{'accuracy': 0.0, 'hierarchical_precision': 1.0, 'hierarchical_recall': 0.25, 'hierarchical_fmeasure': 0.4}\n",
"\n",
"TEST CASE #11\n",
"References: ['1111']\n",
"Predictions: ['9999']\n",
"Accuracy: 0.0, Hierarchical Precision: 0.0, Hierarchical Recall: 0.0, Hierarchical F-measure: 0\n",
"{'accuracy': 0.0, 'hierarchical_precision': 0.0, 'hierarchical_recall': 0.0, 'hierarchical_fmeasure': 0}\n",
"\n"
]
}
],
"source": [
"# Compute all test cases and print the results\n",
"from tests import test_cases\n",
"\n",
"test_number = 1\n",
"\n",
"for test_case in test_cases:\n",
" references = test_case[\"references\"]\n",
" predictions = test_case[\"predictions\"]\n",
" print(f\"TEST CASE #{test_number}\")\n",
" print(f\"References: {references}\")\n",
" print(f\"Predictions: {predictions}\")\n",
" print(ham.compute(references=references, predictions=predictions))\n",
" print()\n",
" test_number += 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Model evaluation using the test split of the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from datasets import load_dataset\n",
"from transformers import pipeline\n",
"import evaluate\n",
"import json\n",
"\n",
"# Ensure that the HF_TOKEN environment variable is set\n",
"hf_token = os.getenv(\"HF_TOKEN\")\n",
"if hf_token is None:\n",
" raise ValueError(\"HF_TOKEN environment variable is not set.\")\n",
"\n",
"# Load the dataset\n",
"test_data_subset = (\n",
" load_dataset(\n",
" \"ICILS/multilingual_parental_occupations\", split=\"test\", token=hf_token\n",
" )\n",
" .shuffle(seed=42)\n",
" .select(range(100))\n",
")\n",
"test_data = load_dataset(\n",
" \"ICILS/multilingual_parental_occupations\", split=\"test\", token=hf_token\n",
")\n",
"\n",
"validation_data = load_dataset(\n",
" \"ICILS/multilingual_parental_occupations\", split=\"validation\", token=hf_token\n",
")\n",
"\n",
"# Initialize the pipeline\n",
"pipe = pipeline(\"text-classification\", model=\"ICILS/XLM-R-ISCO\", token=hf_token)\n",
"\n",
"# Define the mapping from ISCO_CODE_TITLE to ISCO codes\n",
"def extract_isco_code(isco_code_title: str):\n",
" # ISCO_CODE_TITLE is a string like \"7412 Electrical Mechanics and Fitters\" so we need to extract the first part for the evaluation.\n",
" return isco_code_title.split()[0]\n",
"\n",
"# Initialize the hierarchical accuracy measure\n",
"hierarchical_accuracy = evaluate.load(\"danieldux/isco_hierarchical_accuracy\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test set"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.8611914401388086, Hierarchical Precision: 0.989010989010989, Hierarchical Recall: 0.9836065573770492, Hierarchical F-measure: 0.9863013698630136\n",
"Evaluation results saved to isco_test_results.json\n"
]
}
],
"source": [
"# Evaluate the model\n",
"predictions = []\n",
"references = []\n",
"for example in test_data:\n",
"\n",
" # Predict\n",
" prediction = pipe(\n",
" example[\"JOB_DUTIES\"]\n",
" ) # Use the key \"JOB_DUTIES\" for the text data\n",
" predicted_label = extract_isco_code(prediction[0][\"label\"])\n",
" predictions.append(predicted_label)\n",
"\n",
" # Reference\n",
" reference_label = example[\"ISCO\"] # Use the key \"ISCO\" for the ISCO code\n",
" references.append(reference_label)\n",
"\n",
"# Compute the hierarchical accuracy\n",
"test_results = hierarchical_accuracy.compute(predictions=predictions, references=references)\n",
"\n",
"# Save the results to a JSON file\n",
"with open(\"isco_test_results.json\", \"w\") as f:\n",
" json.dump(test_results, f)\n",
"\n",
"print(\"Evaluation results saved to isco_test_results.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Validation set"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.8576800694243564, Hierarchical Precision: 0.9757462686567164, Hierarchical Recall: 0.9812382739212008, Hierarchical F-measure: 0.9784845650140319\n",
"Evaluation results saved to isco_validation_results.json\n"
]
}
],
"source": [
"# Evaluate the model\n",
"predictions = []\n",
"references = []\n",
"for example in validation_data:\n",
"\n",
" # Predict\n",
" prediction = pipe(\n",
" example[\"JOB_DUTIES\"]\n",
" ) # Use the key \"JOB_DUTIES\" for the text data\n",
" predicted_label = extract_isco_code(prediction[0][\"label\"])\n",
" predictions.append(predicted_label)\n",
"\n",
" # Reference\n",
" reference_label = example[\"ISCO\"] # Use the key \"ISCO\" for the ISCO code\n",
" references.append(reference_label)\n",
"\n",
"# Compute the hierarchical accuracy\n",
"validation_results = hierarchical_accuracy.compute(predictions=predictions, references=references)\n",
"\n",
"# Save the results to a JSON file\n",
"with open(\"isco_validation_results.json\", \"w\") as f:\n",
" json.dump(validation_results, f)\n",
"\n",
"print(\"Evaluation results saved to isco_validation_results.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inter rater agreement"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"# icils_isco_int_ml = \"/datasets/isco-data/processed/2018/icils_2018_isco_ml.parquet\"\n",
"icils_isco_int_ml = \"gs://isco-data-asia-southeast1/processed/2018/icils_2018_isco_ml.parquet\"\n",
"\n",
"icils_df = pd.read_parquet(icils_isco_int_ml)[['JOB', 'DUTIES', 'ISCO', 'ISCO_REL', 'LANGUAGE']]\n",
"\n",
"# Create a new pandas dataframe with samples that have ISCO_REL values\n",
"isco_rel_df = icils_df[icils_df['ISCO'].notna()].copy()\n",
"\n",
"# remove rows with None values in ISCO_REL\n",
"isco_rel_df = isco_rel_df[isco_rel_df['ISCO_REL'].notna()]\n",
"\n",
"# Group the DataFrame by LANGUAGE column\n",
"grouped_df = isco_rel_df.groupby('LANGUAGE')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"results_df = pd.DataFrame(columns=['Language', 'Accuracy', 'Hierarchical Precision', 'Hierarchical Recall', 'Hierarchical F1'])\n",
"\n",
"# Iterate over each group\n",
"for language, group in grouped_df:\n",
" references = group['ISCO'].tolist()\n",
" predictions = group['ISCO_REL'].tolist()\n",
" \n",
" # Apply the compute function\n",
" rel_result = hierarchical_accuracy.compute(references=references, predictions=predictions)\n",
" \n",
" # Create a new DataFrame with the result for the current group\n",
" group_result_df = pd.DataFrame({'Language': [language], 'Accuracy': [rel_result['accuracy']], 'Hierarchical Precision': [rel_result['hierarchical_precision']], 'Hierarchical Recall': [rel_result['hierarchical_recall']], 'Hierarchical F1': [rel_result['hierarchical_fmeasure']]})\n",
" \n",
" # Concatenate the group_result_df with the results_df\n",
" results_df = pd.concat([results_df, group_result_df], ignore_index=True)\n",
" \n",
" # Print the result\n",
" print(f\"Language: {language}\")\n",
" # print(f\"References: {references}\")\n",
" # print(f\"Predictions: {predictions}\")\n",
" print(f\"Result: {rel_result}\")\n",
" print()\n",
"\n",
"average_accuracy = results_df['Accuracy'].mean()\n",
"average_hierarchical_precision = results_df['Hierarchical Precision'].mean()\n",
"average_hierarchical_recall = results_df['Hierarchical Recall'].mean()\n",
"average_hierarchical_f1 = results_df['Hierarchical F1'].mean()\n",
"\n",
"average_row = ['Average', average_accuracy, average_hierarchical_precision, average_hierarchical_recall, average_hierarchical_f1]\n",
"results_df.loc[len(results_df)] = average_row\n",
"\n",
"\n",
"results_df.to_csv('language_results.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a dataframe with samples where ISCO and ISCO_REL the same\n",
"isco_rel_df_same = isco_rel_df[isco_rel_df['ISCO'] == isco_rel_df['ISCO_REL']]\n",
"\n",
"isco_rel_df_same"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a dataframe with samples where ISCO and ISCO_REL are different\n",
"isco_rel_df_diff = isco_rel_df[isco_rel_df['ISCO'] != isco_rel_df['ISCO_REL']]\n",
"\n",
"isco_rel_df_diff"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"# Make a list of all values in ISCO and ISCO_REL columns\n",
"coder1 = list(isco_rel_df['ISCO'])\n",
"coder2 = list(isco_rel_df['ISCO_REL'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute the hierarchical accuracy\n",
"reliability_results = hierarchical_accuracy.compute(predictions=coder2, references=coder1)\n",
"\n",
"# Save the results to a JSON file\n",
"with open(\"isco_rel_results.json\", \"w\") as f:\n",
" json.dump(reliability_results, f)\n",
"\n",
"print(\"Evaluation results saved to isco_rel_results.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Giskard model testing"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from scipy.special import softmax\n",
"from datasets import load_dataset\n",
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
"\n",
"from giskard import Dataset, Model, scan, testing, GiskardClient, Suite"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>IDSTUD</th>\n",
" <th>JOB_DUTIES</th>\n",
" <th>ISCO</th>\n",
" <th>ISCO_REL</th>\n",
" <th>ISCO_TITLE</th>\n",
" <th>ISCO_CODE_TITLE</th>\n",
" <th>COUNTRY</th>\n",
" <th>LANGUAGE</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>10670109</td>\n",
" <td>forรฆldre 1: Han arbejder som med-chef sammen...</td>\n",
" <td>7412</td>\n",
" <td>None</td>\n",
" <td>Electrical Mechanics and Fitters</td>\n",
" <td>7412 Electrical Mechanics and Fitters</td>\n",
" <td>DNK</td>\n",
" <td>da</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10130106</td>\n",
" <td>asistente de parbulo y basica. ayudaba en la e...</td>\n",
" <td>5312</td>\n",
" <td>5312</td>\n",
" <td>Teachers' Aides</td>\n",
" <td>5312 Teachers' Aides</td>\n",
" <td>CHL</td>\n",
" <td>es</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>10740120</td>\n",
" <td>trabajaba en el campo como capatas. aveces cui...</td>\n",
" <td>6121</td>\n",
" <td>None</td>\n",
" <td>Livestock and Dairy Producers</td>\n",
" <td>6121 Livestock and Dairy Producers</td>\n",
" <td>URY</td>\n",
" <td>es</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>10170109</td>\n",
" <td>gas abastible. vende gas abastible</td>\n",
" <td>9621</td>\n",
" <td>5243</td>\n",
" <td>Messengers, Package Deliverers and Luggage Por...</td>\n",
" <td>9621 Messengers, Package Deliverers and Luggag...</td>\n",
" <td>CHL</td>\n",
" <td>es</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>11480109</td>\n",
" <td>jordbruk. sรฅr potatis tar upp potatis plogar h...</td>\n",
" <td>6111</td>\n",
" <td>6111</td>\n",
" <td>Field Crop and Vegetable Growers</td>\n",
" <td>6111 Field Crop and Vegetable Growers</td>\n",
" <td>FIN</td>\n",
" <td>sv</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>495</th>\n",
" <td>11780107</td>\n",
" <td>acountent mannager|she mannages calls for jobs...</td>\n",
" <td>1211</td>\n",
" <td>9998</td>\n",
" <td>Finance Managers</td>\n",
" <td>1211 Finance Managers</td>\n",
" <td>AUS</td>\n",
" <td>en</td>\n",
" </tr>\n",
" <tr>\n",
" <th>496</th>\n",
" <td>10850104</td>\n",
" <td>geometra/muratore. proggetta case e le restaura</td>\n",
" <td>3112</td>\n",
" <td>3112</td>\n",
" <td>Civil Engineering Technicians</td>\n",
" <td>3112 Civil Engineering Technicians</td>\n",
" <td>ITA</td>\n",
" <td>it</td>\n",
" </tr>\n",
" <tr>\n",
" <th>497</th>\n",
" <td>11460111</td>\n",
" <td>fa parte della misericordia. Trasporta i malat...</td>\n",
" <td>3258</td>\n",
" <td>3258</td>\n",
" <td>Ambulance Workers</td>\n",
" <td>3258 Ambulance Workers</td>\n",
" <td>ITA</td>\n",
" <td>it</td>\n",
" </tr>\n",
" <tr>\n",
" <th>498</th>\n",
" <td>10340111</td>\n",
" <td>์ฌํ๋ณต์ง์ฌ. ํ์ฌ์์ ๋ณต์ง์ ๊ด๋ฆฌ</td>\n",
" <td>2635</td>\n",
" <td>2635</td>\n",
" <td>Social Work and Counselling Professionals</td>\n",
" <td>2635 Social Work and Counselling Professionals</td>\n",
" <td>KOR</td>\n",
" <td>ko</td>\n",
" </tr>\n",
" <tr>\n",
" <th>499</th>\n",
" <td>10370105</td>\n",
" <td>์์์
. ๊ฐ๊ฒ๋ฅผ ์ด์ํ์ ๋ค.</td>\n",
" <td>5221</td>\n",
" <td>None</td>\n",
" <td>Shopkeepers</td>\n",
" <td>5221 Shopkeepers</td>\n",
" <td>KOR</td>\n",
" <td>ko</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>500 rows ร 8 columns</p>\n",
"</div>"
],
"text/plain": [
" IDSTUD JOB_DUTIES ISCO \\\n",
"0 10670109 forรฆldre 1: Han arbejder som med-chef sammen... 7412 \n",
"1 10130106 asistente de parbulo y basica. ayudaba en la e... 5312 \n",
"2 10740120 trabajaba en el campo como capatas. aveces cui... 6121 \n",
"3 10170109 gas abastible. vende gas abastible 9621 \n",
"4 11480109 jordbruk. sรฅr potatis tar upp potatis plogar h... 6111 \n",
".. ... ... ... \n",
"495 11780107 acountent mannager|she mannages calls for jobs... 1211 \n",
"496 10850104 geometra/muratore. proggetta case e le restaura 3112 \n",
"497 11460111 fa parte della misericordia. Trasporta i malat... 3258 \n",
"498 10340111 ์ฌํ๋ณต์ง์ฌ. ํ์ฌ์์ ๋ณต์ง์ ๊ด๋ฆฌ 2635 \n",
"499 10370105 ์์์
. ๊ฐ๊ฒ๋ฅผ ์ด์ํ์ ๋ค. 5221 \n",
"\n",
" ISCO_REL ISCO_TITLE \\\n",
"0 None Electrical Mechanics and Fitters \n",
"1 5312 Teachers' Aides \n",
"2 None Livestock and Dairy Producers \n",
"3 5243 Messengers, Package Deliverers and Luggage Por... \n",
"4 6111 Field Crop and Vegetable Growers \n",
".. ... ... \n",
"495 9998 Finance Managers \n",
"496 3112 Civil Engineering Technicians \n",
"497 3258 Ambulance Workers \n",
"498 2635 Social Work and Counselling Professionals \n",
"499 None Shopkeepers \n",
"\n",
" ISCO_CODE_TITLE COUNTRY LANGUAGE \n",
"0 7412 Electrical Mechanics and Fitters DNK da \n",
"1 5312 Teachers' Aides CHL es \n",
"2 6121 Livestock and Dairy Producers URY es \n",
"3 9621 Messengers, Package Deliverers and Luggag... CHL es \n",
"4 6111 Field Crop and Vegetable Growers FIN sv \n",
".. ... ... ... \n",
"495 1211 Finance Managers AUS en \n",
"496 3112 Civil Engineering Technicians ITA it \n",
"497 3258 Ambulance Workers ITA it \n",
"498 2635 Social Work and Counselling Professionals KOR ko \n",
"499 5221 Shopkeepers KOR ko \n",
"\n",
"[500 rows x 8 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"MODEL_NAME = \"ICILS/XLM-R-ISCO\"\n",
"# DATASET_CONFIG = {\"path\": \"tweet_eval\", \"name\": \"sentiment\", \"split\": \"validation\"}\n",
"TEXT_COLUMN = \"JOB_DUTIES\"\n",
"TARGET_COLUMN = \"ISCO_CODE_TITLE\"\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)\n",
"model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)\n",
"\n",
"label2id: dict = model.config.label2id\n",
"id2label: dict = model.config.id2label\n",
"# LABEL_MAPPING = id2label.items()\n",
"\n",
"# raw_data = load_dataset(**DATASET_CONFIG).to_pandas().iloc[:500]\n",
"raw_data = load_dataset(\"ICILS/multilingual_parental_occupations\", split=\"test\").to_pandas().iloc[:500]\n",
"# raw_data = raw_data.replace({\"ISCO_CODE_TITLE\": LABEL_MAPPING})\n",
"raw_data[\"ISCO\"] = raw_data[\"ISCO\"].astype(str)\n",
"raw_data[\"ISCO_REL\"] = raw_data[\"ISCO_REL\"].astype(str)\n",
"\n",
"raw_data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-03-15 01:07:06,923 pid:166193 MainThread giskard.datasets.base INFO Your 'pandas.DataFrame' is successfully wrapped by Giskard's 'Dataset' wrapper class.\n",
"2024-03-15 01:07:06,925 pid:166193 MainThread giskard.models.automodel INFO Your 'prediction_function' is successfully wrapped by Giskard's 'PredictionFunctionModel' wrapper class.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/dux/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/giskard/datasets/base/__init__.py:466: UserWarning: The column ISCO is declared as numeric but has 'object' as data type. To avoid potential future issues, make sure to cast this column to the correct data type.\n",
" warning(\n"
]
}
],
"source": [
"giskard_dataset = Dataset(\n",
" df=raw_data, # A pandas.DataFrame that contains the raw data (before all the pre-processing steps) and the actual ground truth variable (target).\n",
" target=TARGET_COLUMN, # Ground truth variable.\n",
" name=\"ISCO-08 Parental Occupation Corpus\", # Optional.\n",
")\n",
"\n",
"def prediction_function(df: pd.DataFrame) -> np.ndarray:\n",
" encoded_input = tokenizer(list(df[TEXT_COLUMN]), padding=True, return_tensors=\"pt\")\n",
" output = model(**encoded_input)\n",
" return softmax(output[\"logits\"].detach().numpy(), axis=1)\n",
"\n",
"\n",
"giskard_model = Model(\n",
" model=prediction_function, # A prediction function that encapsulates all the data pre-processing steps and that\n",
" model_type=\"classification\", # Either regression, classification or text_generation.\n",
" name=\"XLM-R ISCO\", # Optional\n",
" classification_labels=list(label2id.keys()), # Their order MUST be identical to the prediction_function's\n",
" feature_names=[TEXT_COLUMN], # Default: all columns of your dataset\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-03-15 01:07:10,228 pid:166193 MainThread giskard.datasets.base INFO Casting dataframe columns from {'JOB_DUTIES': 'object'} to {'JOB_DUTIES': 'object'}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-03-15 01:07:12,838 pid:166193 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (10, 8) executed in 0:00:02.617399\n",
"2024-03-15 01:07:12,848 pid:166193 MainThread giskard.datasets.base INFO Casting dataframe columns from {'JOB_DUTIES': 'object'} to {'JOB_DUTIES': 'object'}\n",
"2024-03-15 01:07:13,007 pid:166193 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (1, 8) executed in 0:00:00.166843\n",
"2024-03-15 01:07:13,015 pid:166193 MainThread giskard.datasets.base INFO Casting dataframe columns from {'JOB_DUTIES': 'object'} to {'JOB_DUTIES': 'object'}\n",
"2024-03-15 01:07:13,017 pid:166193 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (10, 8) executed in 0:00:00.009517\n",
"2024-03-15 01:07:13,029 pid:166193 MainThread giskard.datasets.base INFO Casting dataframe columns from {'JOB_DUTIES': 'object'} to {'JOB_DUTIES': 'object'}\n"
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"results = scan(giskard_model, giskard_dataset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'results' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m display(\u001b[43mresults\u001b[49m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Save it to a file\u001b[39;00m\n\u001b[1;32m 4\u001b[0m results\u001b[38;5;241m.\u001b[39mto_html(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mscan_report.html\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[0;31mNameError\u001b[0m: name 'results' is not defined"
]
}
],
"source": [
"display(results)\n",
"\n",
"# Save it to a file\n",
"results.to_html(\"scan_report.html\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "GiskardError",
"evalue": "No details or messages available.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mGiskardError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 10\u001b[0m\n\u001b[1;32m 7\u001b[0m project_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxlmr_isco\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Create a giskard client to communicate with Giskard\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m client \u001b[38;5;241m=\u001b[39m \u001b[43mGiskardClient\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/giskard/client/giskard_client.py:153\u001b[0m, in \u001b[0;36mGiskardClient.__init__\u001b[0;34m(self, url, key, hf_token)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m hf_token:\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_session\u001b[38;5;241m.\u001b[39mcookies[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspaces-jwt\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m hf_token\n\u001b[0;32m--> 153\u001b[0m server_settings: ServerInfo \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_server_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m server_settings\u001b[38;5;241m.\u001b[39mserverVersion \u001b[38;5;241m!=\u001b[39m giskard\u001b[38;5;241m.\u001b[39m__version__:\n\u001b[1;32m 156\u001b[0m warning(\n\u001b[1;32m 157\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYour giskard client version (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mgiskard\u001b[38;5;241m.\u001b[39m__version__\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) does not match the hub version \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 158\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m(\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mserver_settings\u001b[38;5;241m.\u001b[39mserverVersion\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m). \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 159\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease upgrade your client to the latest version. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpip install \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgiskard[hub]>=2.0.0b\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m -U\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 161\u001b[0m )\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/giskard/client/giskard_client.py:417\u001b[0m, in \u001b[0;36mGiskardClient.get_server_info\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 416\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_server_info\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ServerInfo:\n\u001b[0;32m--> 417\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/public-api/ml-worker-connect\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 419\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ServerInfo\u001b[38;5;241m.\u001b[39mparse_obj(resp\u001b[38;5;241m.\u001b[39mjson())\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/requests/sessions.py:602\u001b[0m, in \u001b[0;36mSession.get\u001b[0;34m(self, url, **kwargs)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"Sends a GET request. Returns :class:`Response` object.\u001b[39;00m\n\u001b[1;32m 595\u001b[0m \n\u001b[1;32m 596\u001b[0m \u001b[38;5;124;03m:param url: URL for the new :class:`Request` object.\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;124;03m:param \\*\\*kwargs: Optional arguments that ``request`` takes.\u001b[39;00m\n\u001b[1;32m 598\u001b[0m \u001b[38;5;124;03m:rtype: requests.Response\u001b[39;00m\n\u001b[1;32m 599\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 601\u001b[0m kwargs\u001b[38;5;241m.\u001b[39msetdefault(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m--> 602\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/requests_toolbelt/sessions.py:76\u001b[0m, in \u001b[0;36mBaseUrlSession.request\u001b[0;34m(self, method, url, *args, **kwargs)\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Send the request after generating the complete URL.\"\"\"\u001b[39;00m\n\u001b[1;32m 75\u001b[0m url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_url(url)\n\u001b[0;32m---> 76\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mBaseUrlSession\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 78\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 584\u001b[0m send_kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimeout\u001b[39m\u001b[38;5;124m\"\u001b[39m: timeout,\n\u001b[1;32m 586\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m: allow_redirects,\n\u001b[1;32m 587\u001b[0m }\n\u001b[1;32m 588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 700\u001b[0m start \u001b[38;5;241m=\u001b[39m preferred_clock()\n\u001b[1;32m 702\u001b[0m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43madapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[1;32m 706\u001b[0m elapsed \u001b[38;5;241m=\u001b[39m preferred_clock() \u001b[38;5;241m-\u001b[39m start\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/requests/adapters.py:538\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n\u001b[0;32m--> 538\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuild_response\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresp\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/autogenstudio/lib/python3.11/site-packages/giskard/client/giskard_client.py:107\u001b[0m, in \u001b[0;36mErrorHandlingAdapter.build_response\u001b[0;34m(self, req, resp)\u001b[0m\n\u001b[1;32m 105\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msuper\u001b[39m(ErrorHandlingAdapter, \u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39mbuild_response(req, resp)\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _get_status(resp) \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m400\u001b[39m:\n\u001b[0;32m--> 107\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m explain_error(resp)\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
"\u001b[0;31mGiskardError\u001b[0m: No details or messages available."
]
}
],
"source": [
"import giskard\n",
"from datasets import load_dataset\n",
"\n",
"dataset = load_dataset(\"ICILS/multilingual_parental_occupations\", split=\"test\")\n",
"\n",
"# Replace this with your own data & model creation.\n",
"# df = giskard.demo.titanic_df()\n",
"df = dataset\n",
"demo_data_preprocessing_function, demo_sklearn_model = giskard.demo.titanic_pipeline()\n",
"\n",
"# Wrap your Pandas DataFrame\n",
"giskard_dataset = giskard.Dataset(df=df,\n",
" target=\"ISCO_CODE_TITLE\",\n",
" name=\"ISCO-08 Parental Occupation Corpus\",\n",
" cat_columns=['LANGUAGE', 'COUNTRY'])\n",
"\n",
"# Wrap your model\n",
"def prediction_function(df):\n",
" preprocessed_df = demo_data_preprocessing_function(df)\n",
" return demo_sklearn_model.predict_proba(preprocessed_df)\n",
"\n",
"giskard_model = giskard.Model(model=prediction_function,\n",
" model_type=\"classification\",\n",
" name=\"Titanic model\",\n",
" classification_labels=demo_sklearn_model.classes_,\n",
" feature_names=['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'])\n",
"\n",
"# Then apply the scan\n",
"results = giskard.scan(giskard_model, giskard_dataset)\n",
"\n",
"\n",
"# Create a Giskard client\n",
"client = giskard.GiskardClient(\n",
" url=\"https://danieldux-giskard.hf.space\", # URL of your Giskard instance\n",
" key=\"<Generate your API Key on the Giskard Hub settings page first>\")\n",
"\n",
"\n",
"# Upload an automatically created test suite to the current project โ๏ธ\n",
"results.generate_test_suite(\"Test suite created by scan\").upload(client, \"xlmr_isco\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "autogenstudio",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|