Spaces:
Build error
Build error
from typing import List, Set, Dict, Tuple | |
def find_ancestors1(tree, code): | |
""" | |
Recursively finds ancestors of a given class (e.g., an ISCO-08 code) in a hierarchical JSON structure. | |
Args: | |
- tree: A dictionary representing the hierarchical structure. | |
- code: A string representing the label of the class. | |
Returns: | |
- A list of strings, each representing an ancestor of the input class. | |
""" | |
ancestors = [] | |
current = code | |
while current: | |
parent = tree[current]["parent"] | |
if parent: | |
ancestors.append(parent) | |
current = parent | |
return ancestors | |
def find_ancestors(node, hierarchy): | |
ancestors = set() | |
nodes_to_visit = [node] | |
while nodes_to_visit: | |
current_node = nodes_to_visit.pop() | |
if current_node in hierarchy: | |
parents = hierarchy[current_node] | |
ancestors.update(parents) | |
nodes_to_visit.extend(parents) | |
return ancestors | |
def extend_with_ancestors(classes, hierarchy): | |
extended_classes = set(classes) | |
for cls in classes: | |
ancestors = find_ancestors(cls, hierarchy) | |
extended_classes.update(ancestors) | |
return extended_classes | |
def calculate_hierarchical_precision_recall( | |
real_codes: List[str], predicted_codes: List[str], hierarchy: Dict[str, Set[str]] | |
) -> Tuple[float, float]: | |
# Extend the sets of real and predicted codes with their ancestors | |
extended_real = set() | |
for code in real_codes: | |
extended_real.add(code) | |
extended_real.update(hierarchy.get(code, set())) | |
extended_predicted = set() | |
for code in predicted_codes: | |
extended_predicted.add(code) | |
extended_predicted.update(hierarchy.get(code, set())) | |
# Calculate the intersection | |
correct_predictions = extended_real.intersection(extended_predicted) | |
# Calculate hierarchical precision and recall | |
hP = len(correct_predictions) / len(extended_predicted) if extended_predicted else 0 | |
hR = len(correct_predictions) / len(extended_real) if extended_real else 0 | |
return hP, hR | |
def calculate_hierarchical_measures(true_labels, predicted_labels, tree): | |
""" | |
Calculates hierarchical precision, recall, and F-measure in a hierarchical structure. | |
Args: | |
- true_labels: A list of strings representing true class labels. | |
- predicted_labels: A list of strings representing predicted class labels. | |
- tree: A dictionary representing the hierarchical structure. | |
Returns: | |
- hP: A floating point number representing hierarchical precision. | |
- hR: A floating point number representing hierarchical recall. | |
- hF: A floating point number representing hierarchical F-measure. | |
""" | |
extended_true = [set(find_ancestors(tree, code) | {code}) for code in true_labels] | |
extended_pred = [ | |
set(find_ancestors(tree, code) | {code}) for code in predicted_labels | |
] | |
true_positive = sum(len(t & p) for t, p in zip(extended_true, extended_pred)) | |
predicted = sum(len(p) for p in extended_pred) | |
actual = sum(len(t) for t in extended_true) | |
hP = true_positive / predicted if predicted else 0 | |
hR = true_positive / actual if actual else 0 | |
hF = (2 * hP * hR) / (hP + hR) if (hP + hR) else 0 | |
return hP, hR, hF | |
def hierarchical_f_measure(hP, hR, beta=1.0): | |
"""Calculate the hierarchical F-measure.""" | |
if hP + hR == 0: | |
return 0 | |
return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR) | |