Spaces:
Running
Running
File size: 23,793 Bytes
b97f2de e76df21 9bfb947 4bda198 b4dc305 731773e b97f2de e76df21 b97f2de 9360834 b97f2de 9bfb947 59a0922 b97f2de a379d16 e76df21 b97f2de eef6283 0ab0e2c 280784e 0ab0e2c d24730e 0ab0e2c ef0061c 0ab0e2c 85625b4 9832421 85625b4 9944deb ef0061c 44fad3a 0ab0e2c 280784e 916ee60 280784e 44fad3a a32e93b ef0061c a32e93b b97f2de bea4a88 47302f4 b97f2de 0ab0e2c a32e93b b97f2de 9360834 4ffcfc1 9360834 6cbc6c9 718b72f 4ffcfc1 b97f2de e76df21 b97f2de 8800702 4ffcfc1 b97f2de 4ffcfc1 cd1cb3b b97f2de cd1cb3b b97f2de cd1cb3b b97f2de cd1cb3b b97f2de cd1cb3b c996b81 cd1cb3b 81924ad cd1cb3b dbde0cb cd1cb3b dbde0cb cd1cb3b dbde0cb cd1cb3b dbde0cb cd1cb3b cca9336 cd1cb3b 44fad3a cd1cb3b 72f4985 cd1cb3b 72f4985 cd1cb3b 72f4985 cd1cb3b 72f4985 cd1cb3b 72f4985 cd1cb3b 72f4985 cd1cb3b a63edd5 4ffcfc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional
from urllib import parse
import mimetypes
import re
import requests
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import VisualQATool
from tqdm import tqdm
from smolagents import (
CodeAgent,
HfApiModel,
LiteLLMModel,
Model,
load_tool,
Tool,
tool,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
# login(os.getenv("HF_TOKEN"))
# WOLFRAM_RESPONSE_KEYS = [
# "Result",
# "Solution",
# "RealSolution",
# ]
image_generation_tool = load_tool("danielkorat/text-to-image", trust_remote_code=True)
@tool
def wolfram_alpha(query: str)-> str:
"""
A wrapper around Wolfram Alpha, an intelligent tool that answers questions about Math, Geography,
Demographics, American Sports and american sports venues, Music, Science, Technology, Culture, Society
and Everyday Life. Input should be a textual search query."
Args:
query: The search query.
Returns:
A string containing the answer for the query.
"""
api_key = os.environ["WOLFRAM_ALPHA_APPID"]
formatted_query = parse.quote_plus(query)
url = f"http://api.wolframalpha.com/v2/query?appid={api_key}&input={formatted_query}&output=json&format=plaintext"
try:
response = requests.get(url)
response.raise_for_status() # Raise an exception for HTTP errors
query_result = response.json().get("queryresult")
print(f"{query_result=}")
if query_result is None or query_result.get("error", False): # Check if there's an error in the response
return f"Error: {query_result['error'].get('msg', 'Unable to fetch Wolfram response.')}"
if (pods := query_result.get("pods")) is None: # Check if the response is missing an answer
return "Wolfram did not provide an answer (no result pods)."
res = ""
for pod in pods:
res += f"{pod['title']}: "
for subpod in pod.get("subpods"):
sub_title = subpod.get('title')
if sub_title is not None and sub_title != "":
sub_title += ": "
res += f"{sub_title}{subpod.get('plaintext', 'N/A')}; "
res += "\n"
print(f"queryres=\n{res}")
return res
except requests.exceptions.RequestException as e:
print(requests.exceptions.RequestException, e)
class GoogleSearchTool(Tool):
name = "web_search"
description = """Performs a google web search for your query then returns a string of the top search results."""
inputs = {
"query": {"type": "string", "description": "The search query to perform."},
"filter_year": {
"type": "integer",
"description": "Optionally restrict results to a certain year",
"nullable": True,
},
}
output_type = "string"
def __init__(self):
super().__init__(self)
import os
self.serpapi_key = os.getenv("SERPER_API_KEY")
def forward(self, query: str, filter_year: Optional[int] = None) -> str:
import requests
if self.serpapi_key is None:
raise ValueError("Missing SerpAPI key. Make sure you have 'SERPER_API_KEY' in your env variables.")
params = {
"engine": "google",
"q": query,
"api_key": self.serpapi_key,
"google_domain": "google.com",
}
headers = {
'X-API-KEY': self.serpapi_key,
'Content-Type': 'application/json'
}
if filter_year is not None:
params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}"
response = requests.request("POST", "https://google.serper.dev/search", headers=headers, data=json.dumps(params))
if response.status_code == 200:
results = response.json()
else:
raise ValueError(response.json())
if "organic" not in results.keys():
print("REZZZ", results.keys())
if filter_year is not None:
raise Exception(
f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year."
)
else:
raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.")
if len(results["organic"]) == 0:
year_filter_message = f" with filter year={filter_year}" if filter_year is not None else ""
return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter."
web_snippets = []
if "organic" in results:
for idx, page in enumerate(results["organic"]):
date_published = ""
if "date" in page:
date_published = "\nDate published: " + page["date"]
source = ""
if "source" in page:
source = "\nSource: " + page["source"]
snippet = ""
if "snippet" in page:
snippet = "\n" + page["snippet"]
redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}"
redacted_version = redacted_version.replace("Your browser can't play this video.", "")
web_snippets.append(redacted_version)
return "## Search Results\n" + "\n\n".join(web_snippets)
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
append_answer_lock = threading.Lock()
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
model = HfApiModel(
model_id="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud",
# model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
custom_role_conversions=custom_role_conversions,
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
wolfram_alpha,
GoogleSearchTool(),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
visual_qa_tool = VisualQATool()
# Agent creation in a factory function
def create_agent():
"""Creates a fresh agent instance for each session"""
return CodeAgent(
model=model,
tools=[visual_qa_tool, image_generation_tool] + WEB_TOOLS,
max_steps=15,
verbosity_level=1,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
)
document_inspection_tool = TextInspectorTool(model, 20000)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
# Get or create session-specific agent
if 'agent' not in session_state:
session_state['agent'] = create_agent()
# Adding monitoring
try:
# log the existence of agent memory
has_memory = hasattr(session_state['agent'], 'memory')
print(f"Agent has memory: {has_memory}")
if has_memory:
print(f"Memory type: {type(session_state['agent'].memory)}")
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
except Exception as e:
print(f"Error in interaction: {str(e)}")
raise
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Ensure the extension correlates to the mime type
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
gr.Textbox(value="", interactive=False, placeholder="Please wait while Steps are getting populated"),
gr.Button(interactive=False)
)
def detect_device(self, request: gr.Request):
# Check whether the user device is a mobile or a computer
if not request:
return "Unknown device"
# Method 1: Check sec-ch-ua-mobile header
is_mobile_header = request.headers.get('sec-ch-ua-mobile')
if is_mobile_header:
return "Mobile" if '?1' in is_mobile_header else "Desktop"
# Method 2: Check user-agent string
user_agent = request.headers.get('user-agent', '').lower()
mobile_keywords = ['android', 'iphone', 'ipad', 'mobile', 'phone']
if any(keyword in user_agent for keyword in mobile_keywords):
return "Mobile"
# Method 3: Check platform
platform = request.headers.get('sec-ch-ua-platform', '').lower()
if platform:
if platform in ['"android"', '"ios"']:
return "Mobile"
elif platform in ['"windows"', '"macos"', '"linux"']:
return "Desktop"
# Default case if no clear indicators
return "Desktop"
def launch(self, **kwargs):
with gr.Blocks(title="AI Agent", theme="ocean", fill_height=True) as demo:
# Different layouts for mobile and computer devices
@gr.render()
def layout(request: gr.Request):
device = self.detect_device(request)
print(f"device - {device}")
# Render layout with sidebar
if device == "Desktop":
with gr.Blocks(fill_height=True,) as sidebar_demo:
file_uploads_log = gr.State([])
with gr.Sidebar():
# gr.Markdown("""# open Deep Research - free the AI agents!
# OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
# However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
# You can try a simplified version here (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research).<br><br>""")
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(lines=3, label="Your request", container=False, placeholder="Enter your prompt here and press Shift+Enter or press the button")
launch_research_btn = gr.Button("Run", variant="primary")
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
gr.HTML("<br><br><h4><center>Powered by:</center></h4>")
with gr.Row():
gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo">
<a target="_blank" href="https://github.com/huggingface/smolagents"><b>huggingface/smolagents</b></a>
</div>""")
# Add session state to store session-specific data
session_state = gr.State({}) # Initialize empty state for each session
stored_messages = gr.State([])
chatbot = gr.Chatbot(
label="AI Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=False,
scale=1,
elem_id="my-chatbot"
)
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot]
).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
None,
[text_input, launch_research_btn])
launch_research_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot]
).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
None,
[text_input, launch_research_btn])
# Render simple layout
else:
with gr.Blocks(fill_height=True,) as simple_demo:
# gr.Markdown("""# open Deep Research - free the AI agents!
# _Built with [smolagents](https://github.com/huggingface/smolagents)_
# OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
# However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
# You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)👇""")
# Add session state to store session-specific data
session_state = gr.State({}) # Initialize empty state for each session
stored_messages = gr.State([])
file_uploads_log = gr.State([])
chatbot = gr.Chatbot(
label="Open Agent",
type="messages",
# avatar_images=(
# None,
# "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
# ),
resizeable=True,
scale=1,
)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(lines=1, label="Your request", placeholder="Enter your prompt here and press the button")
launch_research_btn = gr.Button("Run", variant="primary",)
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot]
).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
None,
[text_input, launch_research_btn])
launch_research_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot]
).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
None,
[text_input, launch_research_btn])
demo.launch(debug=True, **kwargs)
GradioUI().launch() |