import argparse import json import os import threading from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime from pathlib import Path from typing import List, Optional from urllib import parse import mimetypes import re import requests import datasets import pandas as pd from dotenv import load_dotenv from huggingface_hub import login import gradio as gr from scripts.reformulator import prepare_response from scripts.run_agents import ( get_single_file_description, get_zip_description, ) from scripts.text_inspector_tool import TextInspectorTool from scripts.text_web_browser import ( ArchiveSearchTool, FinderTool, FindNextTool, PageDownTool, PageUpTool, SimpleTextBrowser, VisitTool, ) from scripts.visual_qa import VisualQATool from tqdm import tqdm from smolagents import ( CodeAgent, HfApiModel, LiteLLMModel, Model, load_tool, Tool, tool, ) from smolagents.agent_types import AgentText, AgentImage, AgentAudio from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types # login(os.getenv("HF_TOKEN")) # WOLFRAM_RESPONSE_KEYS = [ # "Result", # "Solution", # "RealSolution", # ] image_generation_tool = load_tool("danielkorat/text-to-image", trust_remote_code=True) @tool def wolfram_alpha(query: str)-> str: """ A wrapper around Wolfram Alpha, an intelligent tool that answers questions about Math, Geography, Demographics, American Sports and american sports venues, Music, Science, Technology, Culture, Society and Everyday Life. Input should be a textual search query." Args: query: The search query. Returns: A string containing the answer for the query. """ api_key = os.environ["WOLFRAM_ALPHA_APPID"] formatted_query = parse.quote_plus(query) url = f"http://api.wolframalpha.com/v2/query?appid={api_key}&input={formatted_query}&output=json&format=plaintext" try: response = requests.get(url) response.raise_for_status() # Raise an exception for HTTP errors query_result = response.json().get("queryresult") print(f"{query_result=}") if query_result is None or query_result.get("error", False): # Check if there's an error in the response return f"Error: {query_result['error'].get('msg', 'Unable to fetch Wolfram response.')}" if (pods := query_result.get("pods")) is None: # Check if the response is missing an answer return "Wolfram did not provide an answer (no result pods)." res = "" for pod in pods: res += f"{pod['title']}: " for subpod in pod.get("subpods"): sub_title = subpod.get('title') if sub_title is not None and sub_title != "": sub_title += ": " res += f"{sub_title}{subpod.get('plaintext', 'N/A')}; " res += "\n" print(f"queryres=\n{res}") return res except requests.exceptions.RequestException as e: print(requests.exceptions.RequestException, e) class GoogleSearchTool(Tool): name = "web_search" description = """Performs a google web search for your query then returns a string of the top search results.""" inputs = { "query": {"type": "string", "description": "The search query to perform."}, "filter_year": { "type": "integer", "description": "Optionally restrict results to a certain year", "nullable": True, }, } output_type = "string" def __init__(self): super().__init__(self) import os self.serpapi_key = os.getenv("SERPER_API_KEY") def forward(self, query: str, filter_year: Optional[int] = None) -> str: import requests if self.serpapi_key is None: raise ValueError("Missing SerpAPI key. Make sure you have 'SERPER_API_KEY' in your env variables.") params = { "engine": "google", "q": query, "api_key": self.serpapi_key, "google_domain": "google.com", } headers = { 'X-API-KEY': self.serpapi_key, 'Content-Type': 'application/json' } if filter_year is not None: params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}" response = requests.request("POST", "https://google.serper.dev/search", headers=headers, data=json.dumps(params)) if response.status_code == 200: results = response.json() else: raise ValueError(response.json()) if "organic" not in results.keys(): print("REZZZ", results.keys()) if filter_year is not None: raise Exception( f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year." ) else: raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.") if len(results["organic"]) == 0: year_filter_message = f" with filter year={filter_year}" if filter_year is not None else "" return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter." web_snippets = [] if "organic" in results: for idx, page in enumerate(results["organic"]): date_published = "" if "date" in page: date_published = "\nDate published: " + page["date"] source = "" if "source" in page: source = "\nSource: " + page["source"] snippet = "" if "snippet" in page: snippet = "\n" + page["snippet"] redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}" redacted_version = redacted_version.replace("Your browser can't play this video.", "") web_snippets.append(redacted_version) return "## Search Results\n" + "\n\n".join(web_snippets) AUTHORIZED_IMPORTS = [ "requests", "zipfile", "pandas", "numpy", "sympy", "json", "bs4", "pubchempy", "xml", "yahoo_finance", "Bio", "sklearn", "scipy", "pydub", "PIL", "chess", "PyPDF2", "pptx", "torch", "datetime", "fractions", "csv", ] load_dotenv(override=True) append_answer_lock = threading.Lock() custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" BROWSER_CONFIG = { "viewport_size": 1024 * 5, "downloads_folder": "downloads_folder", "request_kwargs": { "headers": {"User-Agent": user_agent}, "timeout": 300, }, "serpapi_key": os.getenv("SERPAPI_API_KEY"), } os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) model = HfApiModel( model_id="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud", # model_id="Qwen/Qwen2.5-Coder-32B-Instruct", custom_role_conversions=custom_role_conversions, ) text_limit = 20000 ti_tool = TextInspectorTool(model, text_limit) browser = SimpleTextBrowser(**BROWSER_CONFIG) WEB_TOOLS = [ wolfram_alpha, GoogleSearchTool(), VisitTool(browser), PageUpTool(browser), PageDownTool(browser), FinderTool(browser), FindNextTool(browser), ArchiveSearchTool(browser), TextInspectorTool(model, text_limit), ] visual_qa_tool = VisualQATool() # Agent creation in a factory function def create_agent(): """Creates a fresh agent instance for each session""" return CodeAgent( model=model, tools=[visual_qa_tool, image_generation_tool] + WEB_TOOLS, max_steps=15, verbosity_level=1, additional_authorized_imports=AUTHORIZED_IMPORTS, planning_interval=4, ) document_inspection_tool = TextInspectorTool(model, 20000) def stream_to_gradio( agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None, ): """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): for message in pull_messages_from_step( step_log, ): yield message final_answer = step_log # Last log is the run's final_answer final_answer = handle_agent_output_types(final_answer) if isinstance(final_answer, AgentText): yield gr.ChatMessage( role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}\n", ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, ) else: yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") class GradioUI: """A one-line interface to launch your agent in Gradio""" def __init__(self, file_upload_folder: str | None = None): self.file_upload_folder = file_upload_folder if self.file_upload_folder is not None: if not os.path.exists(file_upload_folder): os.mkdir(file_upload_folder) def interact_with_agent(self, prompt, messages, session_state): # Get or create session-specific agent if 'agent' not in session_state: session_state['agent'] = create_agent() # Adding monitoring try: # log the existence of agent memory has_memory = hasattr(session_state['agent'], 'memory') print(f"Agent has memory: {has_memory}") if has_memory: print(f"Memory type: {type(session_state['agent'].memory)}") messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False): messages.append(msg) yield messages yield messages except Exception as e: print(f"Error in interaction: {str(e)}") raise def upload_file( self, file, file_uploads_log, allowed_file_types=[ "application/pdf", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "text/plain", ], ): """ Handle file uploads, default allowed types are .pdf, .docx, and .txt """ if file is None: return gr.Textbox("No file uploaded", visible=True), file_uploads_log try: mime_type, _ = mimetypes.guess_type(file.name) except Exception as e: return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log if mime_type not in allowed_file_types: return gr.Textbox("File type disallowed", visible=True), file_uploads_log # Sanitize file name original_name = os.path.basename(file.name) sanitized_name = re.sub( r"[^\w\-.]", "_", original_name ) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores type_to_ext = {} for ext, t in mimetypes.types_map.items(): if t not in type_to_ext: type_to_ext[t] = ext # Ensure the extension correlates to the mime type sanitized_name = sanitized_name.split(".")[:-1] sanitized_name.append("" + type_to_ext[mime_type]) sanitized_name = "".join(sanitized_name) # Save the uploaded file to the specified folder file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) shutil.copy(file.name, file_path) return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] def log_user_message(self, text_input, file_uploads_log): return ( text_input + ( f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" if len(file_uploads_log) > 0 else "" ), gr.Textbox(value="", interactive=False, placeholder="Please wait while Steps are getting populated"), gr.Button(interactive=False) ) def detect_device(self, request: gr.Request): # Check whether the user device is a mobile or a computer if not request: return "Unknown device" # Method 1: Check sec-ch-ua-mobile header is_mobile_header = request.headers.get('sec-ch-ua-mobile') if is_mobile_header: return "Mobile" if '?1' in is_mobile_header else "Desktop" # Method 2: Check user-agent string user_agent = request.headers.get('user-agent', '').lower() mobile_keywords = ['android', 'iphone', 'ipad', 'mobile', 'phone'] if any(keyword in user_agent for keyword in mobile_keywords): return "Mobile" # Method 3: Check platform platform = request.headers.get('sec-ch-ua-platform', '').lower() if platform: if platform in ['"android"', '"ios"']: return "Mobile" elif platform in ['"windows"', '"macos"', '"linux"']: return "Desktop" # Default case if no clear indicators return "Desktop" def launch(self, **kwargs): with gr.Blocks(title="AI Agent", theme="ocean", fill_height=True) as demo: # Different layouts for mobile and computer devices @gr.render() def layout(request: gr.Request): device = self.detect_device(request) print(f"device - {device}") # Render layout with sidebar if device == "Desktop": with gr.Blocks(fill_height=True,) as sidebar_demo: file_uploads_log = gr.State([]) with gr.Sidebar(): # gr.Markdown("""# open Deep Research - free the AI agents! # OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. # However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨ # You can try a simplified version here (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research).

""") with gr.Group(): gr.Markdown("**Your request**", container=True) text_input = gr.Textbox(lines=3, label="Your request", container=False, placeholder="Enter your prompt here and press Shift+Enter or press the button") launch_research_btn = gr.Button("Run", variant="primary") # If an upload folder is provided, enable the upload feature if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) gr.HTML("

Powered by:

") with gr.Row(): gr.HTML("""
logo huggingface/smolagents
""") # Add session state to store session-specific data session_state = gr.State({}) # Initialize empty state for each session stored_messages = gr.State([]) chatbot = gr.Chatbot( label="AI Agent", type="messages", avatar_images=( None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", ), resizeable=False, scale=1, elem_id="my-chatbot" ) text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) launch_research_btn.click( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) # Render simple layout else: with gr.Blocks(fill_height=True,) as simple_demo: # gr.Markdown("""# open Deep Research - free the AI agents! # _Built with [smolagents](https://github.com/huggingface/smolagents)_ # OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. # However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨ # You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)👇""") # Add session state to store session-specific data session_state = gr.State({}) # Initialize empty state for each session stored_messages = gr.State([]) file_uploads_log = gr.State([]) chatbot = gr.Chatbot( label="Open Agent", type="messages", # avatar_images=( # None, # "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", # ), resizeable=True, scale=1, ) # If an upload folder is provided, enable the upload feature if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) text_input = gr.Textbox(lines=1, label="Your request", placeholder="Enter your prompt here and press the button") launch_research_btn = gr.Button("Run", variant="primary",) text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) launch_research_btn.click( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, launch_research_btn], ).then(self.interact_with_agent, # Include session_state in function calls [stored_messages, chatbot, session_state], [chatbot] ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)), None, [text_input, launch_research_btn]) demo.launch(debug=True, **kwargs) GradioUI().launch()