Spaces:
Runtime error
Runtime error
import gradio as gr | |
import xgboost as xgb | |
import pandas as pd | |
from datasets import load_dataset | |
# Load the dataset | |
dataset = load_dataset("Ammok/hair_health") | |
# Convert to Pandas DataFrame for exploration | |
df = pd.DataFrame(dataset['train']) | |
# Example: Train a simple XGBoost model | |
X = df.drop(columns=["target_column"]) # Replace with your feature columns | |
y = df["target_column"] # Replace with your target column | |
# Train a basic XGBoost model (replace with custom model training code) | |
model = xgb.XGBClassifier() | |
model.fit(X, y) | |
# Function for making predictions | |
def predict(input_data): | |
data = pd.DataFrame([input_data], columns=X.columns) | |
prediction = model.predict(data) | |
return prediction[0] | |
# Set up Gradio interface for data exploration | |
def explore_data(row_number): | |
return df.iloc[row_number].to_dict() | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Hair Health Dataset Exploration") | |
row_number_input = gr.Number(label="Row Number") | |
data_output = gr.JSON(label="Row Data") | |
row_number_input.change(explore_data, inputs=[row_number_input], outputs=[data_output]) | |
gr.Markdown("## Make a Prediction") | |
input_data = {col: gr.Number(label=col) for col in X.columns} # Adjust based on features | |
output = gr.Textbox(label="Prediction") | |
submit_button = gr.Button("Predict") | |
submit_button.click(predict, inputs=[input_data], outputs=[output]) | |
demo.launch() | |