import streamlit as st import pandas as pd import re import time import os from io import StringIO import pyperclip from openai import OpenAI import json # Page Configuration st.set_page_config( page_title="Prompt Output Separator", page_icon="✂️", layout="wide", initial_sidebar_state="expanded" ) # Initialize session state variables if 'openai_api_key' not in st.session_state: st.session_state.openai_api_key = None if 'history' not in st.session_state: st.session_state.history = [] if 'prompt' not in st.session_state: st.session_state.prompt = "" if 'output' not in st.session_state: st.session_state.output = "" if 'title' not in st.session_state: st.session_state.title = "" if 'mode' not in st.session_state: st.session_state.mode = 'light' def count_text_stats(text): words = len(text.split()) chars = len(text) return words, chars def analyze_with_llm(text): if not st.session_state.openai_api_key: st.error("Please provide an OpenAI API key in the sidebar") return None, None try: client = OpenAI(api_key=st.session_state.openai_api_key) response = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ { "role": "system", "content": """You are a text analysis expert. Your task is to separate a conversation into the prompt/question and the response/answer. Return ONLY a JSON object with three fields: - title: a short, descriptive title for the conversation (max 6 words) - prompt: the user's question or prompt - output: the response or answer If you cannot clearly identify any part, set it to null.""" }, { "role": "user", "content": f"Please analyze this text and separate it into title, prompt and output: {text}" } ], temperature=0, response_format={ "type": "json_object" } ) result = response.choices[0].message.content parsed = json.loads(result) return parsed.get("title"), parsed.get("prompt"), parsed.get("output") except Exception as e: st.error(f"Error analyzing text: {str(e)}") return None, None, None def separate_prompt_output(text): if not text: return "", "", "" if st.session_state.openai_api_key: title, prompt, output = analyze_with_llm(text) if all(v is not None for v in [title, prompt, output]): return title, prompt, output parts = text.split('\n\n', 1) if len(parts) == 2: return "Untitled Conversation", parts[0].strip(), parts[1].strip() return "Untitled Conversation", text.strip(), "" def process_column(column): processed_data = [] for item in column: title, prompt, output = separate_prompt_output(str(item)) processed_data.append({"Title": title, "Prompt": prompt, "Output": output}) return pd.DataFrame(processed_data) # Sidebar configuration with st.sidebar: st.image("https://img.icons8.com/color/96/000000/chat.png", width=50) st.markdown("## 🛠️ Configuration") api_key = st.text_input("Enter OpenAI API Key", type="password") if api_key: st.session_state.openai_api_key = api_key # Dark mode toggle st.markdown("---") st.markdown("## 🎨 Appearance") dark_mode = st.toggle("Dark Mode", value=st.session_state.mode == 'dark') st.session_state.mode = 'dark' if dark_mode else 'light' # Settings section st.markdown("---") st.markdown("## ⚙️ Settings") auto_copy = st.checkbox("Auto-copy results to clipboard", value=False) if st.session_state.openai_api_key: st.success("✓ API Key configured") else: st.warning("⚠ No API Key provided - using basic separation") # Main interface st.title("✂️ Prompt Output Separator") st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text. For cost-optimisation, uses GPT 3.5.") # Tabs with icons tabs = st.tabs(["📝 Paste Text", "📁 File Processing", "📊 History"]) # Paste Text Tab with tabs[0]: st.subheader("Paste Prompt and Output") # Input area with placeholder input_container = st.container() with input_container: input_text = st.text_area( "Paste your conversation here...", height=200, placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.", help="Enter the text you want to separate into prompt and output." ) # Process button if st.button("🔄 Process", use_container_width=True) and input_text: with st.spinner("Processing..."): title, prompt, output = separate_prompt_output(input_text) st.session_state.title = title st.session_state.prompt = prompt st.session_state.output = output st.session_state.history.append(input_text) # Suggested Title Section st.markdown("### 📌 Suggested Title") title_area = st.text_area( "", value=st.session_state.get('title', ""), height=70, key="title_area", help="AI-generated title based on the conversation content" ) # Prompt Section st.markdown("### 📝 Prompt") prompt_area = st.text_area( "", value=st.session_state.get('prompt', ""), height=200, key="prompt_area", help="The extracted prompt will appear here" ) # Display prompt stats prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', "")) st.markdown(f"

Words: {prompt_words} | Characters: {prompt_chars}

", unsafe_allow_html=True) if st.button("📋 Copy Prompt", use_container_width=True): pyperclip.copy(st.session_state.get('prompt', "")) st.success("Copied prompt to clipboard!") # Output Section st.markdown("### 🤖 Output") output_area = st.text_area( "", value=st.session_state.get('output', ""), height=200, key="output_area", help="The extracted output will appear here" ) # Display output stats output_words, output_chars = count_text_stats(st.session_state.get('output', "")) st.markdown(f"

Words: {output_words} | Characters: {output_chars}

", unsafe_allow_html=True) if st.button("📋 Copy Output", use_container_width=True): pyperclip.copy(st.session_state.get('output', "")) st.success("Copied output to clipboard!") # File Processing Tab with tabs[1]: st.subheader("File Processing") uploaded_files = st.file_uploader( "Upload files", type=["txt", "md", "csv"], accept_multiple_files=True, help="Upload text files to process multiple conversations at once" ) if uploaded_files: for file in uploaded_files: with st.expander(f"📄 {file.name}", expanded=True): file_content = file.read().decode("utf-8") if file.name.endswith(".csv"): df = pd.read_csv(StringIO(file_content)) for col in df.columns: processed_df = process_column(df[col]) st.write(f"Processed column: {col}") st.dataframe( processed_df, use_container_width=True, hide_index=True ) else: title, prompt, output = separate_prompt_output(file_content) st.json({ "Title": title, "Prompt": prompt, "Output": output }) # History Tab with tabs[2]: st.subheader("Processing History") if st.session_state.history: if st.button("🗑️ Clear History", type="secondary"): st.session_state.history = [] st.experimental_rerun() for idx, item in enumerate(reversed(st.session_state.history)): with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False): st.text_area( "Content", value=item, height=150, key=f"history_{idx}", disabled=True ) else: st.info("💡 No processing history available yet. Process some text to see it here.") # Footer st.markdown("---") st.markdown( """

Created by Daniel Rosehill

""", unsafe_allow_html=True ) # Apply theme if st.session_state.mode == 'dark': st.markdown(""" """, unsafe_allow_html=True) else: st.markdown(""" """, unsafe_allow_html=True)