Spaces:
Runtime error
Runtime error
File size: 7,469 Bytes
547bce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import os.path
import numpy as np
from collections import OrderedDict
import torch
import cv2
from PIL import Image, ImageOps
import utils_image as util
from network_fbcnn import FBCNN as net
import requests
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']:
if os.path.exists(model_path):
print(f'{model_path} exists.')
else:
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state):
if is_gray:
n_channels = 1 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_gray.pth'
else:
n_channels = 3 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
input_quality = 100 - input_quality
model_path = model_name
if os.path.exists(model_path):
print(f'loading model from {model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if (not enable_zoom) or (state[1] is None):
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
# ------------------------------------
# (1) img_L
# ------------------------------------
if n_channels == 1:
open_cv_image = Image.fromarray(input_img)
open_cv_image = ImageOps.grayscale(open_cv_image)
open_cv_image = np.array(open_cv_image) # PIL to open cv image
img = np.expand_dims(open_cv_image, axis=2) # HxWx1
elif n_channels == 3:
open_cv_image = np.array(input_img) # PIL to open cv image
if open_cv_image.ndim == 2:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG
else:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB
img_L = util.uint2tensor4(open_cv_image)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
img_E,QF = model(img_L)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
img_E,QF = model(img_L, qf_input)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
if img_E.ndim == 3:
img_E = img_E[:, :, [2, 1, 0]]
print("--inference finished")
if (state[1] is not None) and enable_zoom:
img_E = state[1]
out_img = Image.fromarray(img_E)
out_img_w, out_img_h = out_img.size # output image size
zoom = zoom/100
x_shift = x_shift/100
y_shift = y_shift/100
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift)
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift)
if (state[0] is None) or not enable_zoom:
in_img = Image.fromarray(input_img)
state[0] = input_img
else:
in_img = Image.fromarray(state[0])
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
return img_E, in_img, out_img, [state[0],img_E]
gr.Interface(
fn = inference,
inputs = [gr.inputs.Image(label="Input Image"),
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"),
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)"),
gr.inputs.Checkbox(default=False, label="Edit Zoom preview (This is optional. "
"After the image result is loaded, check this to edit zoom parameters "
"so that the input image will not be processed when the submit button is pressed.)"),
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image "
"(Use this to see the image quality up close. "
"100 = original size)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift "
"(Increase to shift to the right)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift "
"(Increase to shift downwards)"),
gr.inputs.State(default=[None,None], label="\t")
],
outputs = [gr.outputs.Image(label="Result"),
gr.outputs.Image(label="Before:"),
gr.outputs.Image(label="After:"),
"state"],
examples = [["doraemon.jpg",False,60,False,42,50,50],
["tomandjerry.jpg",False,60,False,40,57,44],
["somepanda.jpg",True,100,False,30,8,24],
["cemetry.jpg",False,70,False,20,76,62],
["michelangelo_david.jpg",True,30,False,12,53,27],
["elon_musk.jpg",False,45,False,15,33,30],
["text.jpg",True,70,False,50,11,29]],
title = "JPEG Artifacts Removal [FBCNN]",
description = "Gradio Demo for JPEG Artifacts Removal. To use it, simply upload your image, "
"or click one of the examples to load them. Check out the paper and the original GitHub repo at the link below. "
"JPEG artifacts are noticeable distortion of images caused by JPEG lossy compression. "
"This is not a super resolution AI but a JPEG compression artifact remover.",
article = "<p style='text-align: center;'><a href='https://github.com/jiaxi-jiang/FBCNN'>FBCNN GitHub Repo</a><br>"
"<a href='https://arxiv.org/abs/2109.14573'>Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)</a></p>",
allow_flagging="never"
).launch(enable_queue=True) |