Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os.path | |
import numpy as np | |
from collections import OrderedDict | |
import torch | |
import cv2 | |
from PIL import Image, ImageOps | |
from utils import utils_logger | |
from utils import utils_image as util | |
from models.network_fbcnn import FBCNN as net | |
import requests | |
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state): | |
if is_gray: | |
n_channels = 1 # set 1 for grayscale image, set 3 for color image | |
model_name = 'fbcnn_gray.pth' | |
else: | |
n_channels = 3 # set 1 for grayscale image, set 3 for color image | |
model_name = 'fbcnn_color.pth' | |
nc = [64,128,256,512] | |
nb = 4 | |
input_quality = 100 - input_quality | |
#model_pool = 'model_zoo' # fixed | |
model_pool = '/content/FBCNN/model_zoo' # fixed | |
model_path = os.path.join(model_pool, model_name) | |
if os.path.exists(model_path): | |
print(f'loading model from {model_path}') | |
else: | |
os.makedirs(os.path.dirname(model_path), exist_ok=True) | |
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) | |
r = requests.get(url, allow_redirects=True) | |
open(model_path, 'wb').write(r.content) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# ---------------------------------------- | |
# load model | |
# ---------------------------------------- | |
if (not enable_zoom) or (state[1] is None): | |
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') | |
model.load_state_dict(torch.load(model_path), strict=True) | |
model.eval() | |
for k, v in model.named_parameters(): | |
v.requires_grad = False | |
model = model.to(device) | |
test_results = OrderedDict() | |
test_results['psnr'] = [] | |
test_results['ssim'] = [] | |
test_results['psnrb'] = [] | |
# ------------------------------------ | |
# (1) img_L | |
# ------------------------------------ | |
if n_channels == 1: | |
open_cv_image = Image.fromarray(input_img) | |
open_cv_image = ImageOps.grayscale(open_cv_image) | |
open_cv_image = np.array(open_cv_image) # PIL to open cv image | |
img = np.expand_dims(open_cv_image, axis=2) # HxWx1 | |
elif n_channels == 3: | |
open_cv_image = np.array(input_img) # PIL to open cv image | |
if open_cv_image.ndim == 2: | |
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG | |
else: | |
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB | |
img_L = util.uint2tensor4(open_cv_image) | |
img_L = img_L.to(device) | |
# ------------------------------------ | |
# (2) img_E | |
# ------------------------------------ | |
img_E,QF = model(img_L) | |
QF = 1- QF | |
img_E = util.tensor2single(img_E) | |
img_E = util.single2uint(img_E) | |
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]]) | |
img_E,QF = model(img_L, qf_input) | |
QF = 1- QF | |
img_E = util.tensor2single(img_E) | |
img_E = util.single2uint(img_E) | |
if img_E.ndim == 3: | |
img_E = img_E[:, :, [2, 1, 0]] | |
if (state[1] is not None) and enable_zoom: | |
img_E = state[1] | |
out_img = Image.fromarray(img_E) | |
out_img_w, out_img_h = out_img.size # output image size | |
zoom = zoom/100 | |
x_shift = x_shift/100 | |
y_shift = y_shift/100 | |
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom | |
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift) | |
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift) | |
if (state[0] is None) or not enable_zoom: | |
in_img = Image.fromarray(input_img) | |
state[0] = input_img | |
else: | |
in_img = Image.fromarray(state[0]) | |
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) | |
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) | |
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom)) | |
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST) | |
return img_E, in_img, out_img, [state[0],img_E] | |
interface = gr.Interface( | |
fn = inference, | |
inputs = [gr.inputs.Image(), | |
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"), | |
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = more JPEG artifact removal)"), | |
gr.inputs.Checkbox(default=False, label="Edit Zoom preview \nThis is optional. " | |
"Check this after the image result is loaded to edit zoom parameters\n" | |
"without processing the input image."), | |
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image \n" | |
"Use this to see the image quality up close \n" | |
"100 = original size"), | |
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift \n" | |
"Increase to shift to the right"), | |
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift \n" | |
"Increase to shift downwards"), | |
gr.inputs.State(default=[None,None]) | |
], | |
outputs = [gr.outputs.Image(label="Result"), | |
gr.outputs.Image(label="Before:"), | |
gr.outputs.Image(label="After:"), | |
"state"] | |
).launch(enable_queue=True,cache_examples=True) |