daniescamilla commited on
Commit
74a87bf
verified
1 Parent(s): 7375957

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
3
  import requests
4
  from transformers import pipeline
5
 
6
- # Obt茅n el token desde las variables de entorno
7
  hf_token = os.getenv("HF_TOKEN")
8
 
9
  # Paso 1: Cargar el modelo de image-to-text
@@ -17,7 +17,7 @@ def generate_recipe(description):
17
  url = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct"
18
  headers = {"Authorization": f"Bearer {hf_token}"}
19
 
20
- # A帽ade el system input para definir el rol del modelo
21
  system_input = (
22
  "Act as a professional chef. Your task is to explain to a regular person "
23
  "how to cook a given dish, providing a step-by-step guide and a list of ingredients with exact quantities."
@@ -47,10 +47,10 @@ def generate_recipe(description):
47
  if "error" in response_data:
48
  return "Error generando receta: " + response_data["error"]
49
 
50
- # Return only the generated text, without the input prompt
51
  return response_data[0]["generated_text"].replace(prompt, "").strip() if response_data else "No se pudo generar la receta."
52
 
53
- # Paso 4: Define la funci贸n principal para procesar la imagen y generar la receta
54
  def process_image(image):
55
  # Paso 4.1: Generar descripci贸n del plato
56
  description = image_to_text(image)[0]['generated_text']
 
3
  import requests
4
  from transformers import pipeline
5
 
6
+ # Obtener el token desde las variables de entorno
7
  hf_token = os.getenv("HF_TOKEN")
8
 
9
  # Paso 1: Cargar el modelo de image-to-text
 
17
  url = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct"
18
  headers = {"Authorization": f"Bearer {hf_token}"}
19
 
20
+ # A帽adir el system input para definir el rol del modelo
21
  system_input = (
22
  "Act as a professional chef. Your task is to explain to a regular person "
23
  "how to cook a given dish, providing a step-by-step guide and a list of ingredients with exact quantities."
 
47
  if "error" in response_data:
48
  return "Error generando receta: " + response_data["error"]
49
 
50
+ # Devolver solo el texto generado sin el input del prompt
51
  return response_data[0]["generated_text"].replace(prompt, "").strip() if response_data else "No se pudo generar la receta."
52
 
53
+ # Paso 4: Definir la funci贸n principal para procesar la imagen y generar la receta
54
  def process_image(image):
55
  # Paso 4.1: Generar descripci贸n del plato
56
  description = image_to_text(image)[0]['generated_text']