Spaces:
Sleeping
Sleeping
File size: 5,832 Bytes
5102822 49bb688 5102822 74d69bb 5102822 74d69bb 5102822 74d69bb efe698b 74d69bb 5102822 74d69bb 5102822 74d69bb efe698b 74d69bb 5102822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import torch
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain import PromptTemplate, LLMChain
from langchain.llms import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from dotenv import load_dotenv
from htmlTemplates import css
# Load environment variables
load_dotenv()
# Dolly-v2-3b model pipeline
@st.cache_resource
def load_pipeline():
# Use recommended settings for Dolly-v2-3b
model_name = "databricks/dolly-v2-3b"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # Use float16 for GPU, float32 for CPU
device_map="auto", # Automatically map model to available devices (e.g., GPU if available)
trust_remote_code=True
)
# Load the pipeline with required configurations
return pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
return_full_text=True # Required for LangChain compatibility
)
# Initialize Dolly pipeline
generate_text = load_pipeline()
# Create a HuggingFace pipeline wrapper for LangChain
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
# Template for instruction-only prompts
prompt = PromptTemplate(
input_variables=["instruction"],
template="{instruction}"
)
# Template for prompts with context
prompt_with_context = PromptTemplate(
input_variables=["instruction", "context"],
template="{instruction}\n\nInput:\n{context}"
)
# Create LLM chains
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
# Extracting text from .txt files
def get_text_files_content(folder):
text = ""
for filename in os.listdir(folder):
if filename.endswith('.txt'):
with open(os.path.join(folder, filename), 'r', encoding='utf-8') as file:
text += file.read() + "\n"
return text
# Converting text to chunks
def get_chunks(raw_text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=2000,
chunk_overlap=500,
length_function=len
)
chunks = text_splitter.split_text(raw_text)
return chunks
# Using Hugging Face embeddings model and FAISS to create vectorstore
def get_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'} # Ensure embeddings use CPU
)
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vectorstore
# Generating response from user queries
def handle_question(question, vectorstore=None):
if vectorstore:
documents = vectorstore.similarity_search(question, k=3)
context = "\n".join([doc.page_content for doc in documents])
if context:
result_with_context = llm_context_chain.run(instruction=question, context=context)
return result_with_context
return llm_chain.run(instruction=question)
def main():
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")
st.write(css, unsafe_allow_html=True)
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
st.header("Chat with Notes and AI :books:")
# Subject selection dropdown
subjects = [
"A Trumped World", "Agri Tax in Punjab", "Assad's Fall in Syria", "Elusive National Unity", "Europe and Trump 2.0",
"Going Down with Democracy", "Indonesia's Pancasila Philosophy", "Pakistan in Choppy Waters",
"Pakistan's Semiconductor Ambitions", "Preserving Pakistan's Cultural Heritage", "Tackling Informal Economy",
"Technical Education in Pakistan", "The Case for Solidarity Levies", "The Decline of the Sole Superpower",
"The Power of Big Oil", "Trump 2.0 and Pakistan's Emerging Foreign Policy", "Trump and the World 2.0",
"Trump vs BRICS", "US-China Trade War", "War on Humanity", "Women's Suppression in Afghanistan"
]
data_folder = "data"
subject_folders = {subject: os.path.join(data_folder, subject.replace(' ', '_')) for subject in subjects}
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
st.sidebar.info(f"You have selected: {selected_subject}")
# Process data folder for question answering
subject_folder_path = subject_folders[selected_subject]
if os.path.exists(subject_folder_path):
raw_text = get_text_files_content(subject_folder_path)
if raw_text:
text_chunks = get_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.vectorstore = vectorstore
else:
st.error("No content found for the selected subject.")
else:
st.error(f"Folder not found for {selected_subject}.")
# Chat interface
question = st.text_input("Ask a question about your selected subject:")
if question:
if st.session_state.vectorstore:
response = handle_question(question, st.session_state.vectorstore)
st.subheader("Response:")
st.write(response)
else:
st.warning("Please load the content for the selected subject before asking a question.")
if __name__ == '__main__':
main()
|