CSSChatbot / app.py
danishjameel003's picture
Update app.py
51fcb96 verified
raw
history blame
6.26 kB
import os
import torch
import streamlit as st
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from dotenv import load_dotenv
# Set Streamlit page configuration
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")
# Load environment variables
load_dotenv()
# Dolly-v2-3b model pipeline
@st.cache_resource
def load_pipeline():
model_name = "databricks/dolly-v2-3b"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
# Load model with offload folder for disk storage of weights
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, # Use float16 for GPU, float32 for CPU
device_map="auto", # Automatically map model to available devices (e.g., GPU if available)
trust_remote_code=True,
offload_folder="./offload_weights" # Folder to store offloaded weights
)
# Return text-generation pipeline
return pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
return_full_text=True
)
# Initialize Dolly pipeline
generate_text = load_pipeline()
# Create a HuggingFace pipeline wrapper for LangChain
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
# Template for instruction-only prompts
prompt = PromptTemplate(
input_variables=["instruction"],
template="{instruction}"
)
# Template for prompts with context
prompt_with_context = PromptTemplate(
input_variables=["instruction", "context"],
template="{instruction}\n\nInput:\n{context}"
)
# Create LLM chains
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
# Extracting text from .txt files
def get_text_files_content(folder):
text = ""
for filename in os.listdir(folder):
if filename.endswith('.txt'):
with open(os.path.join(folder, filename), 'r', encoding='utf-8') as file:
text += file.read() + "\n"
return text
# Converting text to chunks
def get_chunks(raw_text):
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000, # Reduced chunk size for faster processing
chunk_overlap=200, # Smaller overlap for efficiency
length_function=len
)
chunks = text_splitter.split_text(raw_text)
return chunks
# Using Hugging Face embeddings model and FAISS to create vectorstore
def get_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'} # Ensure embeddings use CPU
)
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vectorstore
# Generating response from user queries
def handle_question(question, vectorstore=None):
if vectorstore:
# Reduce the number of retrieved chunks for faster processing
documents = vectorstore.similarity_search(question, k=2)
context = "\n".join([doc.page_content for doc in documents])
# Limit context to 1000 characters to speed up model inference
context = context[:1000]
if context:
result_with_context = llm_context_chain.invoke({"instruction": question, "context": context})
return result_with_context
# Fallback to instruction-only chain if no context is found
return llm_chain.invoke({"instruction": question})
def main():
st.title("Chat with Notes :books:")
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
# Root folder for content
root_folder = "data"
content_types = {
"Current Affairs": os.path.join(root_folder, "current_affairs"),
"Essays": os.path.join(root_folder, "essays")
}
# Content type selection
content_type = st.sidebar.radio("Select Content Type:", list(content_types.keys()))
selected_folder = content_types[content_type]
# Subject selection
if os.path.exists(selected_folder):
subjects = [f.replace("_", " ").replace(".txt", "") for f in os.listdir(selected_folder) if f.endswith('.txt')]
else:
subjects = []
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
# Process data folder for vectorstore
raw_text = ""
if selected_subject:
subject_path = os.path.join(selected_folder, selected_subject.replace(" ", "_") + ".txt")
if os.path.exists(subject_path):
raw_text = get_text_files_content(selected_folder)
if raw_text:
text_chunks = get_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.vectorstore = vectorstore
else:
st.warning("No content found for the selected subject.")
else:
st.error(f"File not found for {selected_subject}.")
# Display preview of notes
if raw_text:
st.subheader("Preview of Notes")
st.text_area("Preview Content:", value=raw_text[:2000], height=300, disabled=True) # Show a snippet of the notes
# Chat interface
st.subheader("Ask Your Question")
question = st.text_input("Ask a question about your selected subject:")
if question:
if st.session_state.vectorstore:
response = handle_question(question, st.session_state.vectorstore)
st.subheader("Answer:")
st.write(response.get("text", "No response found."))
else:
st.warning("Please load the content for the selected subject before asking a question.")
if __name__ == '__main__':
main()