Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,9 @@
|
|
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
import streamlit as st
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from langchain.chains import LLMChain
|
8 |
-
from langchain_community.llms import HuggingFacePipeline
|
9 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
10 |
from dotenv import load_dotenv
|
11 |
|
12 |
# Set Streamlit page configuration
|
@@ -15,54 +12,28 @@ st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", lay
|
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
model_name = "databricks/dolly-v2-3b"
|
22 |
-
|
23 |
-
# Load tokenizer
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
|
25 |
-
|
26 |
-
# Load model with offload folder for disk storage of weights
|
27 |
-
model = AutoModelForCausalLM.from_pretrained(
|
28 |
-
model_name,
|
29 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, # Use float16 for GPU, float32 for CPU
|
30 |
-
device_map="auto", # Automatically map model to available devices (e.g., GPU if available)
|
31 |
-
trust_remote_code=True,
|
32 |
-
offload_folder="./offload_weights" # Folder to store offloaded weights
|
33 |
-
)
|
34 |
-
|
35 |
-
# Return text-generation pipeline
|
36 |
-
return pipeline(
|
37 |
-
task="text-generation",
|
38 |
-
model=model,
|
39 |
-
tokenizer=tokenizer,
|
40 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
41 |
-
device_map="auto",
|
42 |
-
return_full_text=True
|
43 |
-
)
|
44 |
-
|
45 |
-
# Initialize Dolly pipeline
|
46 |
-
generate_text = load_pipeline()
|
47 |
-
|
48 |
-
# Create a HuggingFace pipeline wrapper for LangChain
|
49 |
-
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
50 |
|
51 |
# Template for instruction-only prompts
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
|
67 |
# Extracting text from .txt files
|
68 |
def get_text_files_content(folder):
|
@@ -75,41 +46,31 @@ def get_text_files_content(folder):
|
|
75 |
|
76 |
# Converting text to chunks
|
77 |
def get_chunks(raw_text):
|
78 |
-
from langchain.text_splitter import CharacterTextSplitter
|
79 |
text_splitter = CharacterTextSplitter(
|
80 |
separator="\n",
|
81 |
chunk_size=1000, # Reduced chunk size for faster processing
|
82 |
chunk_overlap=200, # Smaller overlap for efficiency
|
83 |
length_function=len
|
84 |
)
|
85 |
-
|
86 |
-
return chunks
|
87 |
|
88 |
-
# Using
|
89 |
def get_vectorstore(chunks):
|
90 |
-
embeddings =
|
91 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
92 |
-
model_kwargs={'device': 'cpu'} # Ensure embeddings use CPU
|
93 |
-
)
|
94 |
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
|
95 |
return vectorstore
|
96 |
|
97 |
# Generating response from user queries
|
98 |
def handle_question(question, vectorstore=None):
|
99 |
if vectorstore:
|
100 |
-
#
|
101 |
documents = vectorstore.similarity_search(question, k=2)
|
102 |
context = "\n".join([doc.page_content for doc in documents])
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
result_with_context = llm_context_chain.invoke({"instruction": question, "context": context})
|
109 |
-
return result_with_context
|
110 |
-
|
111 |
-
# Fallback to instruction-only chain if no context is found
|
112 |
-
return llm_chain.invoke({"instruction": question})
|
113 |
|
114 |
def main():
|
115 |
st.title("Chat with Notes :books:")
|
@@ -171,7 +132,7 @@ def main():
|
|
171 |
if st.session_state.vectorstore:
|
172 |
response = handle_question(question, st.session_state.vectorstore)
|
173 |
st.subheader("Answer:")
|
174 |
-
st.write(response
|
175 |
else:
|
176 |
st.warning("Please load the content for the selected subject before asking a question.")
|
177 |
|
|
|
1 |
+
import openai
|
2 |
import os
|
|
|
3 |
import streamlit as st
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
|
|
|
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
# Set Streamlit page configuration
|
|
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
+
# OpenAI API Key (set in .env or directly in your environment)
|
16 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "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")
|
17 |
+
openai.api_key = OPENAI_API_KEY
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Template for instruction-only prompts
|
20 |
+
def generate_openai_response(instruction, context=None):
|
21 |
+
try:
|
22 |
+
messages = [
|
23 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
24 |
+
{"role": "user", "content": instruction},
|
25 |
+
]
|
26 |
+
if context:
|
27 |
+
messages.append({"role": "user", "content": f"Context: {context}"})
|
28 |
+
response = openai.ChatCompletion.create(
|
29 |
+
model="gpt-4",
|
30 |
+
messages=messages,
|
31 |
+
max_tokens=1200,
|
32 |
+
temperature=0.7
|
33 |
+
)
|
34 |
+
return response["choices"][0]["message"]["content"]
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error: {str(e)}"
|
37 |
|
38 |
# Extracting text from .txt files
|
39 |
def get_text_files_content(folder):
|
|
|
46 |
|
47 |
# Converting text to chunks
|
48 |
def get_chunks(raw_text):
|
|
|
49 |
text_splitter = CharacterTextSplitter(
|
50 |
separator="\n",
|
51 |
chunk_size=1000, # Reduced chunk size for faster processing
|
52 |
chunk_overlap=200, # Smaller overlap for efficiency
|
53 |
length_function=len
|
54 |
)
|
55 |
+
return text_splitter.split_text(raw_text)
|
|
|
56 |
|
57 |
+
# Using OpenAI embeddings model and FAISS to create vectorstore
|
58 |
def get_vectorstore(chunks):
|
59 |
+
embeddings = OpenAIEmbeddings() # Uses OpenAI Embeddings
|
|
|
|
|
|
|
60 |
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
|
61 |
return vectorstore
|
62 |
|
63 |
# Generating response from user queries
|
64 |
def handle_question(question, vectorstore=None):
|
65 |
if vectorstore:
|
66 |
+
# Retrieve relevant chunks using similarity search
|
67 |
documents = vectorstore.similarity_search(question, k=2)
|
68 |
context = "\n".join([doc.page_content for doc in documents])
|
69 |
+
context = context[:1000] # Limit context size for faster processing
|
70 |
+
return generate_openai_response(question, context)
|
71 |
+
else:
|
72 |
+
# Fallback to instruction-only prompt if no context is found
|
73 |
+
return generate_openai_response(question)
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def main():
|
76 |
st.title("Chat with Notes :books:")
|
|
|
132 |
if st.session_state.vectorstore:
|
133 |
response = handle_question(question, st.session_state.vectorstore)
|
134 |
st.subheader("Answer:")
|
135 |
+
st.write(response)
|
136 |
else:
|
137 |
st.warning("Please load the content for the selected subject before asking a question.")
|
138 |
|