Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,16 @@ from dotenv import load_dotenv
|
|
9 |
# Set Streamlit page configuration
|
10 |
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")
|
11 |
|
12 |
-
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
-
# OpenAI API
|
16 |
-
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY"
|
|
|
|
|
17 |
openai.api_key = OPENAI_API_KEY
|
18 |
|
19 |
-
#
|
20 |
def generate_openai_response(instruction, context=None):
|
21 |
try:
|
22 |
messages = [
|
@@ -35,7 +37,7 @@ def generate_openai_response(instruction, context=None):
|
|
35 |
except Exception as e:
|
36 |
return f"Error: {str(e)}"
|
37 |
|
38 |
-
#
|
39 |
def get_text_files_content(folder):
|
40 |
text = ""
|
41 |
for filename in os.listdir(folder):
|
@@ -44,7 +46,7 @@ def get_text_files_content(folder):
|
|
44 |
text += file.read() + "\n"
|
45 |
return text
|
46 |
|
47 |
-
#
|
48 |
def get_chunks(raw_text):
|
49 |
text_splitter = CharacterTextSplitter(
|
50 |
separator="\n",
|
@@ -54,13 +56,13 @@ def get_chunks(raw_text):
|
|
54 |
)
|
55 |
return text_splitter.split_text(raw_text)
|
56 |
|
57 |
-
#
|
58 |
def get_vectorstore(chunks):
|
59 |
embeddings = OpenAIEmbeddings() # Uses OpenAI Embeddings
|
60 |
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
|
61 |
return vectorstore
|
62 |
|
63 |
-
#
|
64 |
def handle_question(question, vectorstore=None):
|
65 |
if vectorstore:
|
66 |
# Retrieve relevant chunks using similarity search
|
@@ -72,37 +74,31 @@ def handle_question(question, vectorstore=None):
|
|
72 |
# Fallback to instruction-only prompt if no context is found
|
73 |
return generate_openai_response(question)
|
74 |
|
|
|
75 |
def main():
|
76 |
st.title("Chat with Notes :books:")
|
77 |
|
78 |
-
# Initialize session state
|
79 |
if "vectorstore" not in st.session_state:
|
80 |
st.session_state.vectorstore = None
|
81 |
|
82 |
# Define folders for Current Affairs and Essays
|
83 |
-
data_folder = "data" # Current Affairs
|
84 |
-
essay_folder = "essays" # Essays
|
85 |
|
86 |
# Content type selection
|
87 |
content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])
|
88 |
|
89 |
-
#
|
90 |
if content_type == "Current Affairs":
|
91 |
-
if os.path.exists(data_folder)
|
92 |
-
subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))]
|
93 |
-
else:
|
94 |
-
subjects = []
|
95 |
-
# Handle Essays (all essays are in a single folder)
|
96 |
elif content_type == "Essays":
|
97 |
-
if os.path.exists(essay_folder)
|
98 |
-
subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')]
|
99 |
-
else:
|
100 |
-
subjects = []
|
101 |
|
102 |
# Subject selection
|
103 |
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
|
104 |
|
105 |
-
#
|
106 |
raw_text = ""
|
107 |
if content_type == "Current Affairs" and selected_subject:
|
108 |
subject_folder = os.path.join(data_folder, selected_subject)
|
@@ -113,12 +109,12 @@ def main():
|
|
113 |
with open(subject_file, "r", encoding="utf-8") as file:
|
114 |
raw_text = file.read()
|
115 |
|
116 |
-
# Display preview
|
117 |
if raw_text:
|
118 |
st.subheader("Preview of Notes")
|
119 |
-
st.text_area("Preview Content:", value=raw_text[:2000], height=300, disabled=True)
|
120 |
|
121 |
-
#
|
122 |
text_chunks = get_chunks(raw_text)
|
123 |
vectorstore = get_vectorstore(text_chunks)
|
124 |
st.session_state.vectorstore = vectorstore
|
@@ -136,5 +132,6 @@ def main():
|
|
136 |
else:
|
137 |
st.warning("Please load the content for the selected subject before asking a question.")
|
138 |
|
|
|
139 |
if __name__ == '__main__':
|
140 |
main()
|
|
|
9 |
# Set Streamlit page configuration
|
10 |
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")
|
11 |
|
12 |
+
# Load environment variables from .env file
|
13 |
load_dotenv()
|
14 |
|
15 |
+
# Retrieve OpenAI API key from environment
|
16 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
17 |
+
if not OPENAI_API_KEY:
|
18 |
+
raise ValueError("OpenAI API key not found. Set it in the .env file or environment variables.")
|
19 |
openai.api_key = OPENAI_API_KEY
|
20 |
|
21 |
+
# Function to generate response from OpenAI API
|
22 |
def generate_openai_response(instruction, context=None):
|
23 |
try:
|
24 |
messages = [
|
|
|
37 |
except Exception as e:
|
38 |
return f"Error: {str(e)}"
|
39 |
|
40 |
+
# Extract text from .txt files in a folder
|
41 |
def get_text_files_content(folder):
|
42 |
text = ""
|
43 |
for filename in os.listdir(folder):
|
|
|
46 |
text += file.read() + "\n"
|
47 |
return text
|
48 |
|
49 |
+
# Convert raw text into manageable chunks
|
50 |
def get_chunks(raw_text):
|
51 |
text_splitter = CharacterTextSplitter(
|
52 |
separator="\n",
|
|
|
56 |
)
|
57 |
return text_splitter.split_text(raw_text)
|
58 |
|
59 |
+
# Create a FAISS vectorstore using OpenAI embeddings
|
60 |
def get_vectorstore(chunks):
|
61 |
embeddings = OpenAIEmbeddings() # Uses OpenAI Embeddings
|
62 |
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
|
63 |
return vectorstore
|
64 |
|
65 |
+
# Handle user queries by fetching relevant context and generating responses
|
66 |
def handle_question(question, vectorstore=None):
|
67 |
if vectorstore:
|
68 |
# Retrieve relevant chunks using similarity search
|
|
|
74 |
# Fallback to instruction-only prompt if no context is found
|
75 |
return generate_openai_response(question)
|
76 |
|
77 |
+
# Main function for the Streamlit app
|
78 |
def main():
|
79 |
st.title("Chat with Notes :books:")
|
80 |
|
81 |
+
# Initialize session state for vectorstore
|
82 |
if "vectorstore" not in st.session_state:
|
83 |
st.session_state.vectorstore = None
|
84 |
|
85 |
# Define folders for Current Affairs and Essays
|
86 |
+
data_folder = "data" # Folder for Current Affairs notes
|
87 |
+
essay_folder = "essays" # Folder for Essays
|
88 |
|
89 |
# Content type selection
|
90 |
content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])
|
91 |
|
92 |
+
# Populate subject list based on selected content type
|
93 |
if content_type == "Current Affairs":
|
94 |
+
subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] if os.path.exists(data_folder) else []
|
|
|
|
|
|
|
|
|
95 |
elif content_type == "Essays":
|
96 |
+
subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')] if os.path.exists(essay_folder) else []
|
|
|
|
|
|
|
97 |
|
98 |
# Subject selection
|
99 |
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
|
100 |
|
101 |
+
# Load and process the selected subject
|
102 |
raw_text = ""
|
103 |
if content_type == "Current Affairs" and selected_subject:
|
104 |
subject_folder = os.path.join(data_folder, selected_subject)
|
|
|
109 |
with open(subject_file, "r", encoding="utf-8") as file:
|
110 |
raw_text = file.read()
|
111 |
|
112 |
+
# Display notes preview
|
113 |
if raw_text:
|
114 |
st.subheader("Preview of Notes")
|
115 |
+
st.text_area("Preview Content:", value=raw_text[:2000], height=300, disabled=True)
|
116 |
|
117 |
+
# Generate vectorstore for the selected notes
|
118 |
text_chunks = get_chunks(raw_text)
|
119 |
vectorstore = get_vectorstore(text_chunks)
|
120 |
st.session_state.vectorstore = vectorstore
|
|
|
132 |
else:
|
133 |
st.warning("Please load the content for the selected subject before asking a question.")
|
134 |
|
135 |
+
# Run the app
|
136 |
if __name__ == '__main__':
|
137 |
main()
|