rachman commited on
Commit
66c3bf1
·
verified ·
1 Parent(s): ba211cd

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +46 -37
src/streamlit_app.py CHANGED
@@ -1,40 +1,49 @@
1
- import altair as alt
2
- import numpy as np
3
  import pandas as pd
 
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ #import library
 
2
  import pandas as pd
3
+ import numpy as np
4
  import streamlit as st
5
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
6
+ from tensorflow_hub.keras_layer import KerasLayer
7
+
8
+ import tensorflow as tf
9
+ from tensorflow.keras.models import load_model
10
+
11
+ #import pickle
12
+ import pickle
13
+
14
+ #load model
15
+ def run():
16
+ file = st.file_uploader("Upload an image", type=["jpg", "png"])
17
+
18
+ model = load_model('my_model.keras', custom_objects={'KerasLayer': KerasLayer})
19
+ target_size=(224, 224)
20
+
21
+ def import_and_predict(image_data, model):
22
+ image = load_img(image_data, target_size=(224, 224))
23
+ img_array = img_to_array(image)
24
+ img_array = tf.expand_dims(img_array, 0) # Create a batch
25
+
26
+ # Normalize the image
27
+ img_array = img_array / 255.0
28
+
29
+ # Make prediction
30
+ predictions = model.predict(img_array)
31
+
32
+ # Get the class with the highest probability
33
+ idx = np.where(predictions >= 0.5, 1, 0).item()
34
+ # predicted_class = np.argmax(predictions)
35
+
36
+ jenis = ['Brain Tumor', 'Healthy']
37
+ result = f"Prediction: {jenis[idx]}"
38
+
39
+ return result
40
 
41
+ if file is None:
42
+ st.text("Please upload an image file")
43
+ else:
44
+ result = import_and_predict(file, model)
45
+ st.image(file)
46
+ st.write(result)
47
+
48
+ if __name__ == "__main__":
49
+ run()