danurahul commited on
Commit
9474d13
·
1 Parent(s): ceadf08

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +395 -0
app.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system("pip install gradio==2.4.6")
3
+ os.system('pip freeze')
4
+ import torch
5
+ torch.hub.download_url_to_file('https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/files/?p=%2Fconfigs%2Fmodel.yaml&dl=1', 'vqgan_imagenet_f16_16384.yaml')
6
+ torch.hub.download_url_to_file('https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/files/?p=%2Fckpts%2Flast.ckpt&dl=1', 'vqgan_imagenet_f16_16384.ckpt')
7
+ import argparse
8
+ import math
9
+ from pathlib import Path
10
+ import sys
11
+ sys.path.insert(1, './taming-transformers')
12
+ from base64 import b64encode
13
+ from omegaconf import OmegaConf
14
+ from PIL import Image
15
+ from taming.models import cond_transformer, vqgan
16
+ import taming.modules
17
+ from torch import nn, optim
18
+ from torch.nn import functional as F
19
+ from torchvision import transforms
20
+ from torchvision.transforms import functional as TF
21
+ from tqdm.notebook import tqdm
22
+ from CLIP import clip
23
+ import kornia.augmentation as K
24
+ import numpy as np
25
+ import imageio
26
+ from PIL import ImageFile, Image
27
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
28
+ import gradio as gr
29
+ import nvidia_smi
30
+ nvidia_smi.nvmlInit()
31
+ handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
32
+ # card id 0 hardcoded here, there is also a call to get all available card ids, so we could iterate
33
+ torch.hub.download_url_to_file('https://images.pexels.com/photos/158028/bellingrath-gardens-alabama-landscape-scenic-158028.jpeg', 'garden.jpeg')
34
+ torch.hub.download_url_to_file('https://images.pexels.com/photos/68767/divers-underwater-ocean-swim-68767.jpeg', 'coralreef.jpeg')
35
+ torch.hub.download_url_to_file('https://images.pexels.com/photos/803975/pexels-photo-803975.jpeg', 'cabin.jpeg')
36
+ def sinc(x):
37
+ return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
38
+ def lanczos(x, a):
39
+ cond = torch.logical_and(-a < x, x < a)
40
+ out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
41
+ return out / out.sum()
42
+ def ramp(ratio, width):
43
+ n = math.ceil(width / ratio + 1)
44
+ out = torch.empty([n])
45
+ cur = 0
46
+ for i in range(out.shape[0]):
47
+ out[i] = cur
48
+ cur += ratio
49
+ return torch.cat([-out[1:].flip([0]), out])[1:-1]
50
+ def resample(input, size, align_corners=True):
51
+ n, c, h, w = input.shape
52
+ dh, dw = size
53
+ input = input.view([n * c, 1, h, w])
54
+ if dh < h:
55
+ kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
56
+ pad_h = (kernel_h.shape[0] - 1) // 2
57
+ input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
58
+ input = F.conv2d(input, kernel_h[None, None, :, None])
59
+ if dw < w:
60
+ kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
61
+ pad_w = (kernel_w.shape[0] - 1) // 2
62
+ input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
63
+ input = F.conv2d(input, kernel_w[None, None, None, :])
64
+ input = input.view([n, c, h, w])
65
+ return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
66
+ class ReplaceGrad(torch.autograd.Function):
67
+ @staticmethod
68
+ def forward(ctx, x_forward, x_backward):
69
+ ctx.shape = x_backward.shape
70
+ return x_forward
71
+ @staticmethod
72
+ def backward(ctx, grad_in):
73
+ return None, grad_in.sum_to_size(ctx.shape)
74
+ replace_grad = ReplaceGrad.apply
75
+ class ClampWithGrad(torch.autograd.Function):
76
+ @staticmethod
77
+ def forward(ctx, input, min, max):
78
+ ctx.min = min
79
+ ctx.max = max
80
+ ctx.save_for_backward(input)
81
+ return input.clamp(min, max)
82
+ @staticmethod
83
+ def backward(ctx, grad_in):
84
+ input, = ctx.saved_tensors
85
+ return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
86
+ clamp_with_grad = ClampWithGrad.apply
87
+ def vector_quantize(x, codebook):
88
+ d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
89
+ indices = d.argmin(-1)
90
+ x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
91
+ return replace_grad(x_q, x)
92
+ class Prompt(nn.Module):
93
+ def __init__(self, embed, weight=1., stop=float('-inf')):
94
+ super().__init__()
95
+ self.register_buffer('embed', embed)
96
+ self.register_buffer('weight', torch.as_tensor(weight))
97
+ self.register_buffer('stop', torch.as_tensor(stop))
98
+ def forward(self, input):
99
+ input_normed = F.normalize(input.unsqueeze(1), dim=2)
100
+ embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
101
+ dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
102
+ dists = dists * self.weight.sign()
103
+ return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
104
+ def parse_prompt(prompt):
105
+ vals = prompt.rsplit(':', 2)
106
+ vals = vals + ['', '1', '-inf'][len(vals):]
107
+ return vals[0], float(vals[1]), float(vals[2])
108
+ class MakeCutouts(nn.Module):
109
+ def __init__(self, cut_size, cutn, cut_pow=1.):
110
+ super().__init__()
111
+ self.cut_size = cut_size
112
+ self.cutn = cutn
113
+ self.cut_pow = cut_pow
114
+ self.augs = nn.Sequential(
115
+ # K.RandomHorizontalFlip(p=0.5),
116
+ # K.RandomVerticalFlip(p=0.5),
117
+ # K.RandomSolarize(0.01, 0.01, p=0.7),
118
+ # K.RandomSharpness(0.3,p=0.4),
119
+ # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5),
120
+ # K.RandomCrop(size=(self.cut_size,self.cut_size), p=0.5),
121
+ K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border'),
122
+ K.RandomPerspective(0.7,p=0.7),
123
+ K.ColorJitter(hue=0.1, saturation=0.1, p=0.7),
124
+ K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7),
125
+
126
+ )
127
+ self.noise_fac = 0.1
128
+ self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
129
+ self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
130
+ def forward(self, input):
131
+ sideY, sideX = input.shape[2:4]
132
+ max_size = min(sideX, sideY)
133
+ min_size = min(sideX, sideY, self.cut_size)
134
+ cutouts = []
135
+
136
+ for _ in range(self.cutn):
137
+ # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
138
+ # offsetx = torch.randint(0, sideX - size + 1, ())
139
+ # offsety = torch.randint(0, sideY - size + 1, ())
140
+ # cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
141
+ # cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
142
+ # cutout = transforms.Resize(size=(self.cut_size, self.cut_size))(input)
143
+
144
+ cutout = (self.av_pool(input) + self.max_pool(input))/2
145
+ cutouts.append(cutout)
146
+ batch = self.augs(torch.cat(cutouts, dim=0))
147
+ if self.noise_fac:
148
+ facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
149
+ batch = batch + facs * torch.randn_like(batch)
150
+ return batch
151
+ def load_vqgan_model(config_path, checkpoint_path):
152
+ config = OmegaConf.load(config_path)
153
+ if config.model.target == 'taming.models.vqgan.VQModel':
154
+ model = vqgan.VQModel(**config.model.params)
155
+ model.eval().requires_grad_(False)
156
+ model.init_from_ckpt(checkpoint_path)
157
+ elif config.model.target == 'taming.models.vqgan.GumbelVQ':
158
+ model = vqgan.GumbelVQ(**config.model.params)
159
+ model.eval().requires_grad_(False)
160
+ model.init_from_ckpt(checkpoint_path)
161
+ elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
162
+ parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
163
+ parent_model.eval().requires_grad_(False)
164
+ parent_model.init_from_ckpt(checkpoint_path)
165
+ model = parent_model.first_stage_model
166
+ else:
167
+ raise ValueError(f'unknown model type: {config.model.target}')
168
+ del model.loss
169
+ return model
170
+ def resize_image(image, out_size):
171
+ ratio = image.size[0] / image.size[1]
172
+ area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
173
+ size = round((area * ratio)**0.5), round((area / ratio)**0.5)
174
+ return image.resize(size, Image.LANCZOS)
175
+ model_name = "vqgan_imagenet_f16_16384"
176
+ images_interval = 50
177
+ width = 280
178
+ height = 280
179
+ init_image = ""
180
+ seed = 42
181
+ args = argparse.Namespace(
182
+ noise_prompt_seeds=[],
183
+ noise_prompt_weights=[],
184
+ size=[width, height],
185
+ init_image=init_image,
186
+ init_weight=0.,
187
+ clip_model='ViT-B/32',
188
+ vqgan_config=f'{model_name}.yaml',
189
+ vqgan_checkpoint=f'{model_name}.ckpt',
190
+ step_size=0.15,
191
+ cutn=4,
192
+ cut_pow=1.,
193
+ display_freq=images_interval,
194
+ seed=seed,
195
+ )
196
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
197
+ print('Using device:', device)
198
+ model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
199
+ perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
200
+ def inference(text, seed, step_size, max_iterations, width, height, init_image, init_weight, target_images, cutn, cut_pow):
201
+ torch.cuda.empty_cache()
202
+ torch.cuda.memory_summary(device=None, abbreviated=False)
203
+ all_frames = []
204
+ size=[width, height]
205
+ texts = text
206
+ init_weight=init_weight
207
+ if init_image:
208
+ init_image = init_image.name
209
+ else:
210
+ init_image = ""
211
+ if target_images:
212
+ target_images = target_images.name
213
+ else:
214
+ target_images = ""
215
+ max_iterations = max_iterations
216
+ model_names={"vqgan_imagenet_f16_16384": 'ImageNet 16384',"vqgan_imagenet_f16_1024":"ImageNet 1024", 'vqgan_openimages_f16_8192':'OpenImages 8912',
217
+ "wikiart_1024":"WikiArt 1024", "wikiart_16384":"WikiArt 16384", "coco":"COCO-Stuff", "faceshq":"FacesHQ", "sflckr":"S-FLCKR"}
218
+ name_model = model_names[model_name]
219
+ if target_images == "None" or not target_images:
220
+ target_images = []
221
+ else:
222
+ target_images = target_images.split("|")
223
+ target_images = [image.strip() for image in target_images]
224
+ texts = [phrase.strip() for phrase in texts.split("|")]
225
+ if texts == ['']:
226
+ texts = []
227
+ from urllib.request import urlopen
228
+ if texts:
229
+ print('Using texts:', texts)
230
+ if target_images:
231
+ print('Using image prompts:', target_images)
232
+ if seed is None or seed == -1:
233
+ seed = torch.seed()
234
+ else:
235
+ seed = seed
236
+ torch.manual_seed(seed)
237
+ print('Using seed:', seed)
238
+ # clock=deepcopy(perceptor.visual.positional_embedding.data)
239
+ # perceptor.visual.positional_embedding.data = clock/clock.max()
240
+ # perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1)
241
+ cut_size = perceptor.visual.input_resolution
242
+ f = 2**(model.decoder.num_resolutions - 1)
243
+ make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)
244
+ toksX, toksY = size[0] // f, size[1] // f
245
+ sideX, sideY = toksX * f, toksY * f
246
+ if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
247
+ e_dim = 256
248
+ n_toks = model.quantize.n_embed
249
+ z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None]
250
+ z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None]
251
+ else:
252
+ e_dim = model.quantize.e_dim
253
+ n_toks = model.quantize.n_e
254
+ z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
255
+ z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
256
+ # z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
257
+ # z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
258
+ # normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406],
259
+ # std=[0.229, 0.224, 0.225])
260
+ if init_image:
261
+ if 'http' in init_image:
262
+ img = Image.open(urlopen(init_image))
263
+ else:
264
+ img = Image.open(init_image)
265
+ pil_image = img.convert('RGB')
266
+ pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
267
+ pil_tensor = TF.to_tensor(pil_image)
268
+ z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
269
+ else:
270
+ one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
271
+ # z = one_hot @ model.quantize.embedding.weight
272
+ if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
273
+ z = one_hot @ model.quantize.embed.weight
274
+ else:
275
+ z = one_hot @ model.quantize.embedding.weight
276
+ z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
277
+ z = torch.rand_like(z)*2
278
+ z_orig = z.clone()
279
+ z.requires_grad_(True)
280
+ opt = optim.Adam([z], lr=step_size)
281
+ normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
282
+ std=[0.26862954, 0.26130258, 0.27577711])
283
+ pMs = []
284
+ for prompt in texts:
285
+ txt, weight, stop = parse_prompt(prompt)
286
+ embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
287
+ pMs.append(Prompt(embed, weight, stop).to(device))
288
+ for prompt in target_images:
289
+ path, weight, stop = parse_prompt(prompt)
290
+ img = Image.open(path)
291
+ pil_image = img.convert('RGB')
292
+ img = resize_image(pil_image, (sideX, sideY))
293
+ batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
294
+ embed = perceptor.encode_image(normalize(batch)).float()
295
+ pMs.append(Prompt(embed, weight, stop).to(device))
296
+ for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
297
+ gen = torch.Generator().manual_seed(seed)
298
+ embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
299
+ pMs.append(Prompt(embed, weight).to(device))
300
+ def synth(z):
301
+ if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
302
+ z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1)
303
+ else:
304
+ z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
305
+ return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
306
+ @torch.no_grad()
307
+ def checkin(i, losses):
308
+ losses_str = ', '.join(f'{loss.item():g}' for loss in losses)
309
+ tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}')
310
+ out = synth(z)
311
+ # TF.to_pil_image(out[0].cpu()).save('progress.png')
312
+ # display.display(display.Image('progress.png'))
313
+ res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)
314
+ print(f'gpu: {res.gpu}%, gpu-mem: {res.memory}%')
315
+ def ascend_txt():
316
+ # global i
317
+ out = synth(z)
318
+ iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
319
+
320
+ result = []
321
+ if init_weight:
322
+ result.append(F.mse_loss(z, z_orig) * init_weight / 2)
323
+ #result.append(F.mse_loss(z, torch.zeros_like(z_orig)) * ((1/torch.tensor(i*2 + 1))*init_weight) / 2)
324
+ for prompt in pMs:
325
+ result.append(prompt(iii))
326
+ img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
327
+ img = np.transpose(img, (1, 2, 0))
328
+ # imageio.imwrite('./steps/' + str(i) + '.png', np.array(img))
329
+ img = Image.fromarray(img).convert('RGB')
330
+ all_frames.append(img)
331
+ return result, np.array(img)
332
+ def train(i):
333
+ opt.zero_grad()
334
+ lossAll, image = ascend_txt()
335
+ if i % args.display_freq == 0:
336
+ checkin(i, lossAll)
337
+
338
+ loss = sum(lossAll)
339
+ loss.backward()
340
+ opt.step()
341
+ with torch.no_grad():
342
+ z.copy_(z.maximum(z_min).minimum(z_max))
343
+ return image
344
+ i = 0
345
+ try:
346
+ with tqdm() as pbar:
347
+ while True:
348
+ image = train(i)
349
+ if i == max_iterations:
350
+ break
351
+ i += 1
352
+ pbar.update()
353
+ except KeyboardInterrupt:
354
+ pass
355
+ writer = imageio.get_writer('test.mp4', fps=20)
356
+ for im in all_frames:
357
+ writer.append_data(np.array(im))
358
+ writer.close()
359
+ # all_frames[0].save('out.gif',
360
+ # save_all=True, append_images=all_frames[1:], optimize=False, duration=80, loop=0)
361
+ return image, 'test.mp4'
362
+
363
+ def load_image( infilename ) :
364
+ img = Image.open( infilename )
365
+ img.load()
366
+ data = np.asarray( img, dtype="int32" )
367
+ return data
368
+ title = "VQGAN + CLIP"
369
+ description = "Gradio demo for VQGAN + CLIP. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
370
+ article = "<p style='text-align: center'>Originally made by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). The original BigGAN+CLIP method was by https://twitter.com/advadnoun. Added some explanations and modifications by Eleiber#8347, pooling trick by Crimeacs#8222 (https://twitter.com/EarthML1) and the GUI was made with the help of Abulafia#3734. | <a href='https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ'>Colab</a> | <a href='https://github.com/CompVis/taming-transformers'>Taming Transformers Github Repo</a> | <a href='https://github.com/openai/CLIP'>CLIP Github Repo</a> | Special thanks to BoneAmputee (https://twitter.com/BoneAmputee) for suggestions and advice</p>"
371
+ gr.Interface(
372
+ inference,
373
+ [gr.inputs.Textbox(label="Text Input"),
374
+ gr.inputs.Number(default=42, label="seed"),
375
+ gr.inputs.Slider(minimum=0.1, maximum=0.9, default=0.6, label='step size'),
376
+ gr.inputs.Slider(minimum=1, maximum=500, default=100, label='max iterations', step=1),
377
+ gr.inputs.Slider(minimum=200, maximum=600, default=256, label='width', step=1),
378
+ gr.inputs.Slider(minimum=200, maximum=600, default=256, label='height', step=1),
379
+ gr.inputs.Image(type="file", label="Initial Image (Optional)", optional=True),
380
+ gr.inputs.Slider(minimum=0.0, maximum=15.0, default=0.0, label='Initial Weight', step=1.0),
381
+ gr.inputs.Image(type="file", label="Target Image (Optional)", optional=True),
382
+ gr.inputs.Slider(minimum=1, maximum=40, default=1, label='cutn', step=1),
383
+ gr.inputs.Slider(minimum=1.0, maximum=40.0, default=1.0, label='cut_pow', step=1.0)
384
+ ],
385
+ [gr.outputs.Image(type="numpy", label="Output Image"),gr.outputs.Video(label="Output Video")],
386
+ title=title,
387
+ description=description,
388
+ article=article,
389
+ examples=[
390
+ ['a garden by james gurney',42,0.6, 100, 256, 256, 'garden.jpeg', 0.0, 'garden.jpeg',1,1.0],
391
+ ['coral reef city artstationHQ',1000,0.6, 110, 200, 200, 'coralreef.jpeg', 0.0, 'coralreef.jpeg',1,1.0],
392
+ ['a cabin in the mountains unreal engine',98,0.6, 120, 280, 280, 'cabin.jpeg', 0.0, 'cabin.jpeg',1,1.0]
393
+ ],
394
+ enable_queue=True
395
+ ).launch(debug=True)