File size: 764 Bytes
7e4cb0c
e72c0e5
7e4cb0c
e72c0e5
7e4cb0c
e72c0e5
 
 
 
 
 
 
 
7626c97
6321d4a
3ec1d42
e72c0e5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
from transformers import pipeline

pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

def predict(input_img):
    predictions = pipeline(input_img)
    return input_img, {p["label"]: p["score"] for p in predictions} 

gradio_app = gr.Interface(
    predict,
    inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
    title="Does this picture contain a Hot Dog?",
    description = 'This is a demo of the hotdog-not-hotdog model by julien-c.<br><br>',
    css=".gradio-container {background-color: blanchedalmond;}"
)

if __name__ == "__main__":
    gradio_app.launch()