|
import argparse |
|
from collections import defaultdict |
|
import datetime |
|
import json |
|
import os, sys |
|
import time |
|
import concurrent |
|
|
|
import math |
|
import gradio as gr |
|
import requests |
|
import logging |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import fairseq |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
fairseq_path = os.path.dirname(os.path.dirname(fairseq.__file__)) |
|
|
|
sys.path.insert(1, f"{fairseq_path}") |
|
from fs_plugins.models.glat_decomposed_with_link import GlatDecomposedLink |
|
|
|
sys.path.insert(1, f"{fairseq_path}/examples") |
|
from mass.s2s_model import TransformerMASSModel |
|
from transformer.hub_interface import TransformerHubInterface |
|
|
|
notice_markdown = (""" |
|
# ⚡ Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation. |
|
- **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x. |
|
- **High Quality**: DA-Transformer performs competitively with autoregressive Transformers, even with pre-trained models like BART, in a variety of text generation tasks. |
|
- **Easy Training**: DA-Transformer can be trained end-to-end without requiring knowledge distillation, making it simple and straightforward to train. |
|
|
|
## Resources |
|
|
|
- Codes: [[Github]](https://github.com/thu-coai/DA-Transformer) |
|
- Papers: [[Machine Translation]](https://proceedings.mlr.press/v162/huang22m/huang22m.pdf) [[Pre-training]](https://arxiv.org/pdf/2304.11791.pdf) |
|
|
|
## Terms of use |
|
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It does not gaurantee the correctness of the output text. The service may collect user data for future research. |
|
|
|
## This demo contains models for |
|
- [Zh-En Translation](https://huggingface.co/thu-coai/dat_base_translation_zhen) |
|
- [En-De Translation](https://huggingface.co/thu-coai/dat_base_translation_ende) |
|
- [Question Generation](https://huggingface.co/thu-coai/dat_uncased_squad) |
|
""") |
|
|
|
learn_more_markdown = (""" |
|
""") |
|
|
|
|
|
css = """ |
|
pre { |
|
white-space: pre-wrap; /* Since CSS 2.1 */ |
|
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */ |
|
white-space: -pre-wrap; /* Opera 4-6 */ |
|
white-space: -o-pre-wrap; /* Opera 7 */ |
|
word-wrap: break-word; /* Internet Explorer 5.5+ */ |
|
} |
|
""" |
|
|
|
available_models = { |
|
"dat_base_translation_ende": { |
|
"class": GlatDecomposedLink, |
|
"args":{ |
|
"model_name_or_path": "hfhub://thu-coai/dat_base_translation_ende", |
|
"decode_strategy": "beamsearch", |
|
"decode_max_workers": 1, |
|
"decode_threads_per_worker": 4, |
|
"decode_dedup": True, |
|
"decode_alpha": 1.1, |
|
"decode_gamma": 0, |
|
"decode_beam_size": 200, |
|
"decode_batch_size": 1, |
|
"decode_top_cand": 5, |
|
"decode_max_beam_per_length": 10, |
|
"max_decoder_batch_tokens": 2048 |
|
}, |
|
"examples": ["I am a fast translation model."], |
|
"expected_load_time": 17 |
|
}, |
|
"dat_base_translation_zhen": { |
|
"class": GlatDecomposedLink, |
|
"args":{ |
|
"model_name_or_path": "hfhub://thu-coai/dat_base_translation_zhen", |
|
"decode_strategy": "beamsearch", |
|
"decode_max_workers": 1, |
|
"decode_threads_per_worker": 4, |
|
"decode_dedup": True, |
|
"decode_alpha": 1.1, |
|
"decode_gamma": 0, |
|
"decode_beam_size": 200, |
|
"decode_batch_size": 1, |
|
"decode_top_cand": 5, |
|
"decode_max_beam_per_length": 10, |
|
"max_decoder_batch_tokens": 2048 |
|
}, |
|
"examples": ["我是一个高速的机器翻译模型。"], |
|
"expected_load_time": 17 |
|
}, |
|
"dat_uncased_squad": { |
|
"class": GlatDecomposedLink, |
|
"args":{ |
|
"model_name_or_path": "hfhub://thu-coai/dat_uncased_squad", |
|
"decode_strategy": "beamsearch", |
|
"decode_max_workers": 1, |
|
"decode_threads_per_worker": 4, |
|
"decode_gamma": 0, |
|
"decode_beam_size": 200, |
|
"decode_batch_size": 1, |
|
"decode_top_cand": 5, |
|
"decode_no_consecutive_repeated_tokens": 3, |
|
"decode_no_repeated_tokens": 2, |
|
"decode_max_beam_per_length": 10, |
|
"max_decoder_batch_tokens": 2048 |
|
}, |
|
"examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route."], |
|
"expected_load_time": 20 |
|
}, |
|
"mass_uncased_squad": { |
|
"class": TransformerMASSModel, |
|
"args":{ |
|
"model_name_or_path": "hfhub://thu-coai/mass_uncased_squad" |
|
}, |
|
"examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route."], |
|
"expected_load_time": 10 |
|
}, |
|
"transformer_base_translation_ende": { |
|
"class": TransformerHubInterface, |
|
"args":{ |
|
"model_name_or_path": "hfhub://thu-coai/transformer_base_translation_ende" |
|
}, |
|
"examples": ["I am a fast translation model."], |
|
"expected_load_time": 10 |
|
}, |
|
"transformer_base_translation_zhen": { |
|
"class": TransformerHubInterface, |
|
"args":{ |
|
"model_name_or_path": "hfhub://thu-coai/transformer_base_translation_zhen" |
|
}, |
|
"examples": ["我是一个高速的机器翻译模型。"], |
|
"expected_load_time": 10 |
|
} |
|
} |
|
|
|
compare_available_types = { |
|
"Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer": { |
|
"models": ['dat_base_translation_zhen', 'transformer_base_translation_zhen'], |
|
"examples": ["我是一个高速的机器翻译模型。", "非自回归模型可以用来加速自然语言生成。", |
|
"使用本服务前,用户必须同意以下条款:该服务是仅供非商业用途的研究预览。它不保证输出文本的正确性。本服务可能会收集用户数据以供将来研究。"], |
|
"placeholder": "请输入一个中文句子。 (The model will translate the input into English.)" |
|
}, |
|
"Question Generation: DA-Transformer v.s. MASS": { |
|
"models": ['dat_uncased_squad', "mass_uncased_squad"], |
|
"examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route.", "DA-Transformer [SEP] Directed Acyclic Transformer (DA-Transformer) is a non-autoregressive sequence-to-sequence model designed for parallel text generation."], |
|
"placeholder": "Answer [SEP] Your Passage Here (the answer should be appearred in the passage)." |
|
}, |
|
"Translation En-De: DA-Transformer v.s. Autoregressive Transformer": { |
|
"models": ['dat_base_translation_ende', 'transformer_base_translation_ende'], |
|
"examples": ["I am a fast translation model.", "Non-autoregressive models are designed for fast natural language generation.", |
|
"By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only."], |
|
"placeholder": "Any English sentence here. (The model will translate the input into German.)" |
|
}, |
|
} |
|
|
|
detail_available_types = { |
|
"Translation Zh-En": { |
|
"model": 'dat_base_translation_zhen', |
|
"examples": compare_available_types['Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer']["examples"], |
|
"placeholder": compare_available_types['Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer']["placeholder"] |
|
}, |
|
"Question Generation": { |
|
"model": 'dat_uncased_squad', |
|
"examples": compare_available_types['Question Generation: DA-Transformer v.s. MASS']["examples"], |
|
"placeholder": compare_available_types['Question Generation: DA-Transformer v.s. MASS']["placeholder"] |
|
}, |
|
"Translation En-De": { |
|
"model": 'dat_base_translation_ende', |
|
"examples": compare_available_types['Translation En-De: DA-Transformer v.s. Autoregressive Transformer']["examples"], |
|
"placeholder": compare_available_types['Translation En-De: DA-Transformer v.s. Autoregressive Transformer']["placeholder"], |
|
}, |
|
} |
|
|
|
models = {} |
|
workers = None |
|
|
|
def softplus(x, beta=1): |
|
return math.log1p(math.exp(-abs(x * beta))) / beta + max(x, 0) |
|
|
|
def get_fake_progress(min_progress, max_progress, used_time, expected_time): |
|
percentage = max(1 - softplus(expected_time - used_time) / expected_time, 0) |
|
return min_progress + (max_progress - min_progress) * percentage |
|
|
|
def generate(model, model_input): |
|
return {"output": model.translate(model_input)} |
|
|
|
def generate_detail(model, model_input): |
|
output, graph_info = model.generate_graph(model_input) |
|
return {"output": output, "graph_info": graph_info} |
|
|
|
def load_model(model_name): |
|
assert model_name in available_models |
|
logger.info(f"start loading {model_name}") |
|
model = available_models[model_name]['class'].from_pretrained(**available_models[model_name]['args']) |
|
return model |
|
|
|
def warmup_model(model, model_name): |
|
model.translate(available_models[model_name]['examples'][0]) |
|
|
|
def submit(model_name, model_input, generate_fn, request: gr.Request, progress=gr.Progress()): |
|
assert workers is not None, "No workers" |
|
current_progress = 0 |
|
|
|
progress(0, desc="Downloading Checkpoints and Loading Models") |
|
if model_name not in models: |
|
load_start = time.time() |
|
future = workers.submit(load_model, model_name) |
|
while True: |
|
try: |
|
model = future.result(timeout=1) |
|
break |
|
except concurrent.futures._base.TimeoutError as _: |
|
progress(get_fake_progress(min_progress=current_progress, max_progress=0.8, used_time=time.time() - load_start, expected_time=available_models[model_name]['expected_load_time']), |
|
desc="Downloading Checkpoints and Loading Models") |
|
logger.info(f"Model Loaded: {model_name} Load Time: {time.time() - load_start}") |
|
current_progress = 0.8 |
|
models[model_name] = model |
|
else: |
|
model = models[model_name] |
|
|
|
|
|
progress(current_progress, desc="Downloading Checkpoints and Loading Models") |
|
if current_progress == 0.8: |
|
target_progress = 0.9 |
|
else: |
|
target_progress = 0.5 |
|
warmup_start = time.time() |
|
future = workers.submit(warmup_model, model, model_name) |
|
while True: |
|
try: |
|
result = future.result(timeout=1) |
|
break |
|
except concurrent.futures._base.TimeoutError as _: |
|
progress(get_fake_progress(min_progress=current_progress, max_progress=target_progress, used_time=time.time() - warmup_start, expected_time=1), |
|
desc="Downloading Checkpoints and Loading Models") |
|
current_progress = target_progress |
|
|
|
|
|
progress(current_progress, desc="Running") |
|
try: |
|
generate_start = time.time() |
|
future = workers.submit(generate_fn, model, model_input) |
|
while True: |
|
try: |
|
result = future.result(timeout=1) |
|
break |
|
except concurrent.futures._base.TimeoutError as _: |
|
progress(get_fake_progress(min_progress=current_progress, max_progress=1, used_time=time.time() - generate_start, expected_time=1), |
|
desc="Running") |
|
inference_time = time.time() - generate_start |
|
|
|
result_abbrev = {} |
|
for key, value in result.items(): |
|
log_str = str(value) |
|
if len(log_str) > 1024: |
|
log_str = log_str[:1024] + "..." |
|
result_abbrev[key] = log_str |
|
logger.info(f"Input: [{model_input}] Output: [{result_abbrev}] Inference Time: {inference_time}") |
|
return result, inference_time |
|
except RuntimeError as err: |
|
return f"Runtime Error: {str(err)}", 0 |
|
|
|
|
|
def compare_init_state(model_selector): |
|
model1 = compare_available_types[model_selector]['models'][0] |
|
model2 = compare_available_types[model_selector]['models'][1] |
|
state = [{"model_name": model1}, {"model_name": model2}] |
|
return state |
|
|
|
def compare_refresh(model_selector, samples): |
|
model1 = compare_available_types[model_selector]['models'][0] |
|
model2 = compare_available_types[model_selector]['models'][1] |
|
model_output1 = gr.Textbox.update(visible=True, label=model1) |
|
model_output2 = gr.Textbox.update(visible=True, label=model2) |
|
model_input = gr.Textbox.update(value="", placeholder=compare_available_types[model_selector]['placeholder']) |
|
samples.clear() |
|
samples += [[x]for x in compare_available_types[model_selector]['examples']] |
|
examples = gr.Dataset.update(samples=samples) |
|
model_speed = gr.Plot.update(visible=False) |
|
return model_input, model_output1, model_output2, examples, samples, model_speed |
|
|
|
def compare_submit(model_input, idx, state, request: gr.Request, progress=gr.Progress()): |
|
model_name = state[idx]['model_name'] |
|
model_output, inference_time = submit(model_name, model_input, generate, request, progress) |
|
state[idx]['inference_time'] = inference_time |
|
return model_output['output'], state |
|
|
|
def compare_dataset_click(examples, samples): |
|
return samples[examples][0] |
|
|
|
def compare_show_plot(state): |
|
x = [state[0]['model_name'], state[1]['model_name']] |
|
y = [state[0]['inference_time'], state[1]['inference_time']] |
|
|
|
fig = plt.figure(figsize=(12, 2.5)) |
|
ax = plt.subplot(111) |
|
bars = ax.barh(x, y, 0.75) |
|
ax.bar_label(bars, fmt="%.2f") |
|
ax.set_yticks(np.arange(len(x)), labels=x) |
|
ax.set_xlabel('Inference Time on CPU (s)') |
|
plt.tight_layout() |
|
|
|
|
|
return gr.Row.update(visible=True), gr.Plot.update(value=fig, visible=True) |
|
|
|
def compare_clear(): |
|
return "", "", "", gr.Row.update(visible=False) |
|
|
|
example_list = [] |
|
|
|
def build_tab_compare(): |
|
state = gr.State() |
|
samples = gr.State(example_list) |
|
|
|
available_type_names = list(compare_available_types.keys()) |
|
with gr.Row(elem_id="compare_model_selector_row"): |
|
model_selector = gr.Dropdown( |
|
choices=available_type_names, |
|
value=available_type_names[0] if len(available_type_names) > 0 else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(elem_id="compare_model_input"): |
|
model_input = gr.Textbox(lines=5, label="input") |
|
|
|
examples = gr.Dataset(components=[model_input], |
|
label="Examples", |
|
type='index', |
|
samples=example_list, |
|
visible=True |
|
) |
|
|
|
|
|
|
|
with gr.Row(): |
|
clear_btn = gr.Button(value="Clear") |
|
submit_btn = gr.Button(value="Submit", variant="primary") |
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(elem_id="compare_model_output"): |
|
model_output1 = gr.Textbox(lines=5, label="output", visible=False) |
|
model_output2 = gr.Textbox(lines=5, label="output", visible=False) |
|
|
|
with gr.Row(elem_id="compare_model_speed", visible=False) as row: |
|
with gr.Column(): |
|
model_speed = gr.Plot(value=None, label="Speed") |
|
compare_hints = gr.Markdown("**Note the above time is measured on a free cloud server, which does not use GPU and is thus different from the setting in the papers.**") |
|
|
|
model_selector.change(compare_refresh, [model_selector, samples], [model_input, model_output1, model_output2, examples, samples, model_speed]) |
|
|
|
clear_btn.click(compare_clear, None, [model_input, model_output1, model_output2, row]) |
|
|
|
submit_btn.click(compare_init_state, [model_selector], [state]).\ |
|
then(compare_submit, [model_input, gr.Number(value=0, visible=False, precision=0), state], [model_output1, state]).\ |
|
then(compare_submit, [model_input, gr.Number(value=1, visible=False, precision=0), state], [model_output2, state]).\ |
|
then(compare_show_plot, [state], [row, model_speed]) |
|
|
|
|
|
examples.click(compare_dataset_click, [examples, samples], [model_input]) |
|
|
|
def load(fn): |
|
fn(compare_refresh, [model_selector, samples], [model_input, model_output1, model_output2, examples, samples]) |
|
|
|
return load |
|
|
|
def detail_init_state(model_selector): |
|
model = detail_available_types[model_selector]['model'] |
|
state = {"model_name": model, "cnt": 0} |
|
return state |
|
|
|
def detail_refresh(model_selector, samples): |
|
model = detail_available_types[model_selector]['model'] |
|
model_output = gr.Textbox.update(visible=True, label=model) |
|
model_input = gr.Textbox.update(value="", placeholder=detail_available_types[model_selector]['placeholder']) |
|
samples.clear() |
|
samples += [[x]for x in detail_available_types[model_selector]['examples']] |
|
examples = gr.Dataset.update(samples=samples) |
|
model_speed = gr.Plot.update(visible=False) |
|
return model_input, model_output, examples, samples, model_speed |
|
|
|
def detail_submit(model_input, state, request: gr.Request, progress=gr.Progress()): |
|
model_name = state['model_name'] |
|
model_output, inference_time = submit(model_name, model_input, generate_detail, request, progress) |
|
state['inference_time'] = inference_time |
|
state["graph_info"] = model_output['graph_info'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return model_output['output'], state, gr.Row.update(visible=True), json.dumps(state) |
|
|
|
def detail_dataset_click(examples, samples): |
|
return samples[examples][0] |
|
|
|
def detail_clear(): |
|
return "", "", gr.Row.update(visible=False) |
|
|
|
def build_tab_detail(): |
|
|
|
state = gr.State() |
|
samples = gr.State(example_list) |
|
|
|
available_type_names = list(detail_available_types.keys()) |
|
with gr.Row(elem_id="detail_model_selector_row"): |
|
model_selector = gr.Dropdown( |
|
choices=available_type_names, |
|
value=available_type_names[0] if len(available_type_names) > 0 else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False) |
|
|
|
with gr.Row(elem_id="detail_model_input"): |
|
model_input = gr.Textbox(lines=5, label="input") |
|
|
|
examples = gr.Dataset(components=[model_input], |
|
label="Examples", |
|
type='index', |
|
samples=example_list, |
|
visible=True |
|
) |
|
|
|
|
|
|
|
with gr.Row(): |
|
clear_btn = gr.Button(value="Clear") |
|
submit_btn = gr.Button(value="Submit", variant="primary") |
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(elem_id="detail_model_output"): |
|
model_output = gr.Textbox(lines=5, label="output", visible=False) |
|
|
|
with gr.Row(visible=False) as dag_graph: |
|
with gr.Column(scale=1.8): |
|
html = gr.HTML(open("graph.html").read()) |
|
with gr.Column(scale=1): |
|
minimum_node_pass_prob = gr.Slider(0, 1, value=0.2, label="Show nodes with passing probability greater than", info="Nodes that predict the output sequence are always visible") |
|
minimum_edge_prob = gr.Slider(0, 1, value=0.1, label="Show edges with transition probability greater than") |
|
max_out_edge_num = gr.Slider(1, 10, value=5, step=1, label="Show top-k outgoing edges with k") |
|
max_out_edge_prob = gr.Slider(0, 1, value=0.9, label="Show top-p outgoing edges with p") |
|
force_in_edge = gr.Checkbox(True, label="Show at least one incoming edge for each node") |
|
show_node_detail = gr.Checkbox(False, label="Show verbose node information") |
|
show_edge_label = gr.Checkbox(False, label="Show transition probability") |
|
network_refresh = gr.Button(value="Reinitialize DAG Visualization") |
|
graph_parameters = [minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label] |
|
|
|
js_state = gr.Textbox(visible=False) |
|
|
|
model_selector.change(detail_refresh, [model_selector, samples], [model_input, model_output, examples, samples]) |
|
|
|
clear_btn.click(detail_clear, None, [model_input, model_output, dag_graph]) |
|
|
|
graph_create_js = """(state_str, minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label) => { |
|
var state = JSON.parse(state_str); |
|
var options = { |
|
minimum_node_pass_prob: minimum_node_pass_prob, |
|
minimum_edge_prob: minimum_edge_prob, |
|
max_out_edge_num: max_out_edge_num, |
|
max_out_edge_prob: max_out_edge_prob, |
|
force_in_edge: force_in_edge, |
|
show_node_detail: show_node_detail, |
|
show_edge_label: show_edge_label, |
|
} |
|
startNetwork(state.graph_info, options); |
|
}""" |
|
graph_update_js = """(minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label) => { |
|
var options = { |
|
minimum_node_pass_prob: minimum_node_pass_prob, |
|
minimum_edge_prob: minimum_edge_prob, |
|
max_out_edge_num: max_out_edge_num, |
|
max_out_edge_prob: max_out_edge_prob, |
|
force_in_edge: force_in_edge, |
|
show_node_detail: show_node_detail, |
|
show_edge_label: show_edge_label, |
|
} |
|
updateNetwork(options); |
|
}""" |
|
submit_btn.click(detail_init_state, [model_selector], [state]).\ |
|
then(detail_submit, [model_input, state], [model_output, state, dag_graph, js_state]).\ |
|
then(None, [js_state] + graph_parameters, None, _js=graph_create_js) |
|
network_refresh.click(None, [js_state] + graph_parameters, None, _js=graph_create_js) |
|
minimum_node_pass_prob.change(None, graph_parameters, None, _js=graph_update_js) |
|
minimum_edge_prob.change(None, graph_parameters, None, _js=graph_update_js) |
|
max_out_edge_num.change(None, graph_parameters, None, _js=graph_update_js) |
|
max_out_edge_prob.change(None, graph_parameters, None, _js=graph_update_js) |
|
force_in_edge.select(None, graph_parameters, None, _js=graph_update_js) |
|
show_node_detail.select(None, graph_parameters, None, _js=graph_update_js) |
|
show_edge_label.select(None, graph_parameters, None, _js=graph_update_js) |
|
|
|
examples.click(detail_dataset_click, [examples, samples], [model_input]) |
|
|
|
def load(fn): |
|
fn(detail_refresh, [model_selector, samples], [model_input, model_output, examples, samples]) |
|
|
|
return load |
|
|
|
def build_demo(): |
|
with gr.Blocks(title="DA-Transformer Demo", theme=gr.themes.Base(), css=css) as demo: |
|
gr.Markdown(notice_markdown) |
|
|
|
with gr.Tab("DA-Transformer Inspection") as detail_tab: |
|
detail_load = build_tab_detail() |
|
detail_load(detail_tab.select) |
|
|
|
with gr.Tab("Speed Comparison") as compare_tab: |
|
compare_load = build_tab_compare() |
|
compare_load(compare_tab.select) |
|
|
|
gr.Markdown(learn_more_markdown) |
|
|
|
detail_load(demo.load) |
|
|
|
demo.load(None,None,None,_js=open("global.js").read()) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="0.0.0.0") |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument("--concurrency-count", type=int, default=1) |
|
parser.add_argument("--share", action="store_true") |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
workers = concurrent.futures.ThreadPoolExecutor(max_workers=1) |
|
demo = build_demo() |
|
demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10, |
|
api_open=False).launch(server_name=args.host, server_port=args.port, |
|
share=args.share, max_threads=5) |
|
|