Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import AutoTokenizer | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from enum import Enum | |
class VisType(Enum): | |
SUM = 'Sum over Layers' | |
num_layers = 24 | |
dataset = load_dataset('dar-tau/grammar-attention-maps-opt-350m')['train'] | |
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m', add_prefix_space=True) | |
def analyze_sentence(index, vis_type): | |
row = dataset[index] | |
text = row['text'] | |
tokenized = tokenizer.batch_decode(tokenizer.encode(text, add_special_tokens=False)) | |
attn_map_shape = row['attention_maps_shape'][1:] | |
seq_len = attn_map_shape[1] | |
attn_maps = np.array(row['attention_maps']).reshape(*attn_map_shape).clip(0, 1) | |
fig = plt.figure(figsize=(0.3 + 0.35 * len(tokenized), 0.3 * len(tokenized))) | |
attn_maps = attn_maps[:, 1:, 1:] | |
if vis_type == VisType.SUM.value: | |
plot_data = attn_maps.sum(0) | |
elif vis_type.startswith('Layer #'): | |
layer_to_inspect = int(vis_type.split('#')[1]) | |
plot_data = attn_maps[layer_to_inspect] | |
else: | |
print(vis_type) | |
0/0 | |
sns.heatmap(plot_data) | |
plt.xticks(np.arange(seq_len - 1) + 0.5, tokenized[1:], rotation=90); | |
plt.yticks(np.arange(seq_len - 1) + 0.5, tokenized[1:], rotation=0); | |
plt.ylabel('TARGET') | |
plt.xlabel('SOURCE') | |
plt.grid() | |
metrics = {'Metrics': 1} | |
metrics.update({k: v for k, v in row.items() if k not in ['text', 'attention_maps', 'attention_maps_shape']}) | |
return fig, metrics | |
demo = gr.Blocks() | |
with demo: | |
with gr.Row(): | |
sentence_dropdown = gr.Dropdown(label="Sentence", | |
choices=[x.split('</s> ')[1] for x in dataset['text']], | |
value=0, min_width=300, type='index') | |
vis_dropdown = gr.Dropdown(label="Visualization", choices=[x.value for x in VisType] + [f'Layer #{i}' for i in range(num_layers)], | |
min_width=100, value=VisType.SUM, type='value') | |
btn = gr.Button("Run", min_width=30) | |
output = gr.Plot(label="Plot", container=True) | |
metrics = gr.Label("Metrics") | |
btn.click(analyze_sentence, [sentence_dropdown, vis_dropdown], [output, metrics]) | |
if __name__ == "__main__": | |
demo.launch() |