Spaces:
Sleeping
Sleeping
File size: 3,326 Bytes
d0d12ff c62cf54 0b8d742 d0d12ff 5bd57b6 b818b3f 4362d26 d0d12ff 4362d26 dad4689 d0d12ff 38ede89 b80761a 4362d26 1937eb3 c3144ec d0d12ff c3144ec 1937eb3 28d873f 1937eb3 28d873f 1937eb3 28d873f d0d12ff 4362d26 92585dc 4362d26 4fc6cc7 28d873f 4fc6cc7 74d1efc 7eb4c2f df678ec 0faca03 62f6f76 2b202a1 0faca03 7eb4c2f 28d873f 4fc6cc7 3824c46 92585dc 28d873f 92585dc 28d873f ac09cd4 74d1efc 28d873f d0d12ff 4fc6cc7 b818b3f 92585dc d0d12ff df678ec 92585dc df678ec 92585dc a8f6d87 46203c4 1b01c22 4fc6cc7 ac09cd4 a2adaed 7eb4c2f 1b01c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import os
from typing import Optional, Tuple, Any
from functools import partial
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from dataclasses import dataclass
torch.set_grad_enabled(False)
model_name = "TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ"
token = os.environ['hf_token']
pipe = pipeline("text-generation", model=model_name, device="cuda")
generate_kwargs = {'max_new_tokens': 20}
system_prompt = '''You are given a partial input text for another AI chat interface.
Propose auto-completion to the text. You have several roles:
- Fight under-specification.
- Complete text to save the user time.
Don't suggest anything if there are no good suggestions.
Make sure the suggestions are valid completions of the text! Suggest only up to 5 words ahead. The scheme of your answer should be "answer1;answer2;answer3" (return between 0 to 4 answers).
Answers should be only the completions themselves.
You will now get a blank message from the user and then after your answer, the user will give you the text to complete.
'''
extra_prompt = '''
Examples:
(1)
User: "Help me write a sentiment analysis pipeline"
Assistant: "using huggingface;using NLTK;using python"
(2)
User: "My name is"
Assistant: "" (nothing much to contribute at this point. return nothing)
(3)
User: "Help me find a present for my"
Assistant: "girlfriend;mother;father;friend"
'''
start_messages = [
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': ' '},
{'role': 'assistant', 'content': '<Waiting for text>'}
]
# functions
# @dataclass
# class PastKV:
# past_key_values: Any = None
# past_key_values = PastKV()
def past_kv_to_device(past_kv, device, dtype):
return tuple((torch.tensor(k).to(device).to(dtype), torch.tensor(v).to(device).to(dtype)) for k, v in past_kv)
def detach_past_kv(past_kv):
return tuple((k.cpu().detach().numpy().tolist(), v.cpu().detach().numpy().tolist()) for k, v in past_kv)
@spaces.GPU
def set_past_key_values():
model, tokenizer = pipe.model, pipe.tokenizer
tokenized = tokenizer.apply_chat_template(start_messages, return_tensors='pt')
# Check that this is indeed a prefix of the entire message
test_messages = [*start_messages, {'role': 'user', 'content': 'Hello World!'}]
tokenized_test = tokenizer.apply_chat_template(test_messages, return_tensors='pt')
assert (tokenized_test[:, :tokenized.shape[1]] == tokenized).all().cpu().item()
return detach_past_kv(model(tokenized.to(model.device)).past_key_values)
@spaces.GPU
def generate(text, past_key_values):
messages = [
*start_messages,
{'role': 'user', 'content': text}
]
past_key_values = past_kv_to_device(past_key_values, pipe.model.device, pipe.model.dtype)
response = pipe(messages,
past_key_values=past_key_values,
**generate_kwargs)[0]['generated_text']
return response[-1]['content']
if __name__ == "__main__":
with torch.no_grad():
past_key_values = set_past_key_values()
print(f'{past_key_values=}')
demo = gr.Interface(partial(generate, past_key_values=past_key_values),
inputs="textbox", outputs="textbox")
demo.launch() |