Spaces:
Sleeping
Sleeping
File size: 3,500 Bytes
d0d12ff c62cf54 dd58665 0b8d742 d0d12ff 5bd57b6 b818b3f 4362d26 d0d12ff 1d42cd5 c01c7c6 b80761a 6b3281f 4362d26 1937eb3 c3144ec d0d12ff c3144ec 1937eb3 2cc4838 d768ac5 94466d1 c01c7c6 94466d1 c01c7c6 94466d1 c01c7c6 94466d1 1d42cd5 14c86d4 906564b 1d42cd5 df678ec 0faca03 62f6f76 2b202a1 0faca03 7eb4c2f 14c86d4 4fc6cc7 3824c46 dc596e3 4fb163e 6b3281f 92585dc 6b3281f ac09cd4 74d1efc 28d873f 81b9f08 4fc6cc7 dd58665 94466d1 dd58665 81b9f08 2cc4838 2099ad7 906564b 46203c4 1b01c22 906564b 81b9f08 906564b 81b9f08 1b01c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
from typing import Optional, Tuple, Any
from copy import deepcopy
from functools import partial
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from dataclasses import dataclass
prompt_format = '''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''
system_only_prompt_format = '''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
'''
system_prompt = '''You are given a partial input text for another AI chat interface.
Propose auto-completion to the text. You have several roles:
- Fight under-specification.
- Complete text to save the user time.
Don't suggest anything if there are no good suggestions.
Make sure the suggestions are valid completions of the text! Suggest only up to 5 words ahead. The scheme of your answer should be "answer1;answer2;answer3" (return between 0 to 4 answers).
Answers should be only the completions themselves. If you have nothing as a completion, return "<NOTHING>".
Examples:
(1)
User: Help me write a sentiment analysis pipeline
Assistant: using huggingface;using NLTK;using python
(2)
User: My name is
Assistant: <NOTHING> (nothing much to contribute at this point. return nothing)
(3)
User: Help me find a present for my
Assistant: girlfriend;mother;father;friend
'''
# setup
torch.set_grad_enabled(False)
model_name = "TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ"
pipe = pipeline("text-generation", model=model_name, device='cuda')
generate_kwargs = {
'max_new_tokens': 20,
'temperature': 0.8,
'repetition_penalty': 1.1
}
def past_kv_to_device(past_kv, device, dtype):
return tuple((torch.tensor(k).to(device).to(dtype), torch.tensor(v).to(device).to(dtype)) for k, v in past_kv)
def detach_past_kv(past_kv):
return tuple((k.cpu().detach().numpy().tolist(), v.cpu().detach().numpy().tolist()) for k, v in past_kv)
@spaces.GPU
def set_past_key_values():
model, tokenizer = pipe.model, pipe.tokenizer
tokenized = tokenizer.encode(
system_only_prompt_format.format(system_message=system_prompt),
return_tensors='pt'
)
# tokenized = tokenizer.apply_chat_template(start_messages, return_tensors='pt')
# Check that this is indeed a prefix of the entire message
# test_messages = [*start_messages, {'role': 'user', 'content': 'Hello World!'}]
# tokenized_test = tokenizer.apply_chat_template(test_messages, return_tensors='pt')
# assert (tokenized_test[:, :tokenized.shape[1]] == tokenized).all().cpu().item()
return detach_past_kv(model(tokenized.to(model.device)).past_key_values)
@spaces.GPU
def generate(text, past_key_values):
cur_generate_kwargs = deepcopy(generate_kwargs)
if past_key_values:
past_key_values = past_kv_to_device(past_key_values, pipe.model.device, pipe.model.dtype)
cur_generate_kwargs.update({'past_key_values': past_key_values})
response = pipe(
prompt_format.format(system_message=system_prompt, prompt=text), **cur_generate_kwargs
)[0]['generated_text']
print(response)
return response.split('<|im_start|>assistant\n')[1]
# return response[-1]['content']
if __name__ == "__main__":
with torch.no_grad():
# past_key_values = set_past_key_values()
demo = gr.Interface(
partial(generate, past_key_values=None),
inputs="textbox", outputs="textbox"
)
demo.launch() |