File size: 3,874 Bytes
81e81d9 1f6dcbd 81e81d9 9a230a0 81e81d9 26e7a03 7673f3b 26e7a03 7673f3b 9a230a0 a6550e6 25fb83c b76e9de 25fb83c e8236ff 7673f3b 9a230a0 e8236ff 7673f3b 9a230a0 26e7a03 9a230a0 26e7a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
import torch
llama_layers_format = 'model.layers.{k}'
gpt_layers_format = 'transformer.h.{k}'
dataset_info = [
{'name': 'Common Sense', 'hf_repo': 'tau/commonsense_qa', 'text_col': 'question'},
{'name': 'Factual Recall', 'hf_repo': 'azhx/counterfact-filtered-gptj6b', 'text_col': 'subject+predicate',
'filter': lambda x: x['label'] == 1},
# {'name': 'Physical Understanding', 'hf_repo': 'piqa', 'text_col': 'goal'},
{'name': 'Social Reasoning', 'hf_repo': 'ProlificAI/social-reasoning-rlhf', 'text_col': 'question'}
]
model_info = {
'LLAMA2-7B': dict(model_path='meta-llama/Llama-2-7b-chat-hf', token=os.environ['hf_token'],
original_prompt_template='<s>{prompt}',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
layers_format=llama_layers_format),
'LLAMA2-13B': dict(model_path='meta-llama/Llama-2-13b-chat-hf',
token=os.environ['hf_token'], torch_dtype=torch.float16,
wait_with_hidden_states=True,
# device_map='auto', max_memory={0: "15GB", 1: "30GB"}, dont_cuda=True, # load_in_8bit=True,
original_prompt_template='<s>{prompt}',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
layers_format=llama_layers_format),
'GPT-2 Small': dict(model_path='gpt2', original_prompt_template='{prompt}',
interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
layers_format=gpt_layers_format),
# 'GPT-2 Medium': dict(model_path='gpt2-medium', original_prompt_template='{prompt}',
# interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
# layers_format=gpt_layers_format),
# 'GPT-2 Large': dict(model_path='gpt2-large', original_prompt_template='{prompt}',
# interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
# layers_format=gpt_layers_format),
# 'GPT-2 XL': dict(model_path='gpt2-xl', original_prompt_template='{prompt}',
# interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
# layers_format=gpt_layers_format),
'GPT-J 6B': dict(model_path='EleutherAI/gpt-j-6b', original_prompt_template='{prompt}',
interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
layers_format=gpt_layers_format),
'Mistral-7B Instruct': dict(model_path='mistralai/Mistral-7B-Instruct-v0.2', device_map='cpu',
original_prompt_template='<s>{prompt}',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
layers_format=llama_layers_format),
# 'Gemma-2B': dict(model_path='google/gemma-2b', device_map='cpu', token=os.environ['hf_token'],
# original_prompt_template='<bos>{prompt}',
# interpretation_prompt_template='<bos>User: [X]\n\nAnswer: {prompt}',
# ),
# 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF': dict(model_file='mistral-7b-instruct-v0.2.Q5_K_S.gguf',
# tokenizer='mistralai/Mistral-7B-Instruct-v0.2',
# model_type='llama', hf=True, ctransformers=True,
# original_prompt_template='<s>[INST] {prompt} [/INST]',
# interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
# )
}
|