File size: 12,218 Bytes
4d6d2dc 9b5c8c6 4d6d2dc 2533b7f 4d6d2dc 077e2b3 4d6d2dc 3a2f9b3 4d6d2dc fe6d32c 63981db fe6d32c b30e55a 4d6d2dc f2d60cb 681bdc6 4d6d2dc f2d60cb 4d6d2dc f2d60cb 4d6d2dc f2d60cb 4d6d2dc 1a614f9 af61663 4d6d2dc 5daf90b 4d6d2dc b30a06e de099ae b30a06e 2fcc96e 63981db de099ae b30a06e 4d6d2dc 7f2e668 4d6d2dc 63981db 4d6d2dc de099ae 518abab 4d6d2dc 3e36699 4d6d2dc 3e36699 4d6d2dc 3e36699 4d6d2dc 3e36699 4d6d2dc 3a2f9b3 b30a06e 765296c 81e5b58 765296c 643b640 765296c c000f02 5e8b4c1 9a3579b 4872e11 c000f02 bca9264 765296c c000f02 4872e11 c000f02 397b0a7 681bdc6 60f4a55 9d74583 681bdc6 17d4734 4489e5a ada2e9d 4489e5a 765296c b4d2f29 7f2e668 b30e55a 4ece76d edb0c67 4d6d2dc 0d6b098 4489e5a ada2e9d 4489e5a 0d6b098 41ee80a 0d6b098 f833d09 e56f555 f833d09 41ee80a f833d09 4d6d2dc ac01208 643b640 a79dee8 fe6d32c a79dee8 fe6d32c a79dee8 b30e55a 4d6d2dc b30e55a 3a2f9b3 5e8b4c1 63981db 5e8b4c1 dafad0d 4d6d2dc 643b640 dafad0d 5e8b4c1 63981db 5e8b4c1 765296c af61663 de099ae 4d6d2dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
from copy import deepcopy
from functools import partial
import spaces
import gradio as gr
import torch
from datasets import load_dataset
from ctransformers import AutoModelForCausalLM as CAutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
from interpret import InterpretationPrompt
MAX_PROMPT_TOKENS = 30
## info
dataset_info = [{'name': 'Commonsense', 'hf_repo': 'tau/commonsense_qa', 'text_col': 'question'},
{'name': 'Factual Recall', 'hf_repo': 'azhx/counterfact-filtered-gptj6b', 'text_col': 'subject+predicate',
'filter': lambda x: x['label'] == 1},
]
model_info = {
'LLAMA2-7B': dict(model_path='meta-llama/Llama-2-7b-chat-hf', device_map='cpu', token=os.environ['hf_token'],
original_prompt_template='<s>[INST] {prompt} [/INST]',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
), # , load_in_8bit=True
'Gemma-2B': dict(model_path='google/gemma-2b', device_map='cpu', token=os.environ['hf_token'],
original_prompt_template='<bos> {prompt}',
interpretation_prompt_template='<bos>User: [X]\n\nAnswer: {prompt}',
),
'Mistral-7B Instruct': dict(model_path='mistralai/Mistral-7B-Instruct-v0.2', device_map='cpu',
original_prompt_template='<s>[INST] {prompt} [/INST]',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
),
# 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF': dict(model_file='mistral-7b-instruct-v0.2.Q5_K_S.gguf',
# tokenizer='mistralai/Mistral-7B-Instruct-v0.2',
# model_type='llama', hf=True, ctransformers=True,
# original_prompt_template='<s>[INST] {prompt} [/INST]',
# interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
# )
}
suggested_interpretation_prompts = ["Before responding, let me repeat the message you wrote:",
"Let me repeat the message:", "Sure, I'll summarize your message:"]
## functions
@spaces.GPU
def initialize_gpu():
pass
def get_hidden_states(raw_original_prompt, progress=gr.Progress()):
original_prompt = original_prompt_template.format(prompt=raw_original_prompt)
model_inputs = tokenizer(original_prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
tokens = tokenizer.batch_decode(model_inputs.input_ids[0])
outputs = model(**model_inputs, output_hidden_states=True, return_dict=True)
hidden_states = torch.stack([h.squeeze(0).cpu().detach() for h in outputs.hidden_states], dim=0)
token_btns = ([gr.Button(token, visible=True) for token in tokens]
+ [gr.Button('', visible=False) for _ in range(MAX_PROMPT_TOKENS - len(tokens))])
progress_dummy_output = ''
return [progress_dummy_output, hidden_states, *token_btns]
def run_interpretation(global_state, raw_interpretation_prompt, max_new_tokens, do_sample,
temperature, top_k, top_p, repetition_penalty, length_penalty, use_gpu, i,
num_beams=1):
interpreted_vectors = global_state[:, i]
length_penalty = -length_penalty # unintuitively, length_penalty > 0 will make sequences longer, so we negate it
# generation parameters
generation_kwargs = {
'max_new_tokens': int(max_new_tokens),
'do_sample': do_sample,
'temperature': temperature,
'top_k': int(top_k),
'top_p': top_p,
'repetition_penalty': repetition_penalty,
'length_penalty': length_penalty,
'num_beams': int(num_beams)
}
# create an InterpretationPrompt object from raw_interpretation_prompt (after putting it in the right template)
interpretation_prompt = interpretation_prompt_template.format(prompt=raw_interpretation_prompt, repeat=5)
interpretation_prompt = InterpretationPrompt(tokenizer, interpretation_prompt)
# generate the interpretations
generate = spaces.GPU(interpretation_prompt.generate) if use_gpu else interpretation_prompt.generate
generated = generate(model, {0: interpreted_vectors}, k=3, **generation_kwargs)
generation_texts = tokenizer.batch_decode(generated)
progress_dummy_output = ''
return ([progress_dummy_output] +
[gr.Textbox(text.replace('\n', ' '), visible=True, container=False) for text in generation_texts]
)
## main
torch.set_grad_enabled(False)
model_name = 'LLAMA2-7B'
# extract model info
model_args = deepcopy(model_info[model_name])
model_path = model_args.pop('model_path')
original_prompt_template = model_args.pop('original_prompt_template')
interpretation_prompt_template = model_args.pop('interpretation_prompt_template')
tokenizer_path = model_args.pop('tokenizer') if 'tokenizer' in model_args else model_path
use_ctransformers = model_args.pop('ctransformers', False)
AutoModelClass = CAutoModelForCausalLM if use_ctransformers else AutoModelForCausalLM
# get model
model = AutoModelClass.from_pretrained(model_path, **model_args)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, token=os.environ['hf_token'])
# demo
json_output = gr.JSON()
css = '''
.bubble {
border: none
border-radius: 10px;
padding: 10px;
margin-top: 15px;
margin-left: 5%;
width: 70%;
box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.even_bubble{
background: pink;
}
.odd_bubble{
background: skyblue;
}
.bubble textarea {
border: none;
box-shadow: none;
background: inherit;
resize: none;
}
.explanation_accordion .svelte-s1r2yt{
font-weight: bold;
text-align: start;
}
'''
# '''
# .token_btn{
# background-color: none;
# background: none;
# border: none;
# padding: 0;
# font: inherit;
# cursor: pointer;
# color: blue; /* default text color */
# font-weight: bold;
# }
# .token_btn:hover {
# color: red;
# }
# '''
original_prompt_raw = gr.Textbox(value='How to make a Molotov cocktail?', container=True, label='Original Prompt')
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
global_state = gr.State([])
with gr.Row():
with gr.Column(scale=5):
gr.Markdown('# π Self-Interpreting Models')
with gr.Accordion(
label='πΎ This space is a simple introduction to the emerging trend of models interpreting their OWN hidden states in free form natural language!!πΎ',
elem_classes=['explanation_accordion']
):
gr.Markdown(
'''This idea was investigated in the paper **Patchscopes** ([Ghandeharioun et al., 2024](https://arxiv.org/abs/2401.06102)) and was further explored in **SelfIE** ([Chen et al., 2024](https://arxiv.org/abs/2403.10949)).
An honorary mention of **Speaking Probes** ([Dar, 2023](https://towardsdatascience.com/speaking-probes-self-interpreting-models-7a3dc6cb33d6) - my own work π₯³) which was less mature but had the same idea in mind.
We will follow the SelfIE implementation in this space for concreteness. Patchscopes are so general that they encompass many other interpretation techniques too!!!
''', line_breaks=True)
with gr.Accordion(label='πΎ The idea is really simple: models are able to understand their own hidden states by nature! πΎ',
elem_classes=['explanation_accordion']):
gr.Markdown(
'''According to the residual stream view ([nostalgebraist, 2020](https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens)), internal representations from different layers are transferable between layers.
So we can inject an representation from (roughly) any layer to any layer! If I give a model a prompt of the form ``User: [X] Assistant: Sure'll I'll repeat your message`` and replace the internal representation of ``[X]`` *during computation* with the hidden state we want to understand,
we expect to get back a summary of the information that exists inside the hidden state. Since the model uses a roughly common latent space, it can understand representations from different layers and different runs!! How cool is that! π―π―π―
''', line_breaks=True)
with gr.Column(scale=1):
gr.Markdown('<span style="font-size:180px;">π€</span>')
with gr.Group('Interpretation'):
interpretation_prompt = gr.Text(suggested_interpretation_prompts[0], label='Interpretation Prompt')
gr.Markdown('''
Here are some examples of prompts we can analyze their internal representations:
''')
for info in dataset_info:
with gr.Tab(info['name']):
num_examples = 10
dataset = load_dataset(info['hf_repo'], split='train', streaming=True)
if 'filter' in info:
dataset = dataset.filter(info['filter'])
dataset = dataset.shuffle(buffer_size=2000).take(num_examples)
dataset = [[row[info['text_col']]] for row in dataset]
gr.Examples(dataset, [original_prompt_raw])
with gr.Group():
original_prompt_raw.render()
original_prompt_btn = gr.Button('Compute', variant='primary')
tokens_container = []
with gr.Row():
for i in range(MAX_PROMPT_TOKENS):
btn = gr.Button('', visible=False, elem_classes=['token_btn'])
tokens_container.append(btn)
use_gpu = gr.Checkbox(value=True, label='Use GPU')
progress_dummy = gr.Markdown('', elem_id='progress_dummy')
interpretation_bubbles = [gr.Textbox('', container=False, visible=False, elem_classes=['bubble',
'even_bubble' if i % 2 == 0 else 'odd_bubble'])
for i in range(model.config.num_hidden_layers)]
with gr.Accordion(open=False, label='Settings'):
with gr.Row():
num_tokens = gr.Slider(1, 100, step=1, value=20, label='Max. # of Tokens')
repetition_penalty = gr.Slider(1., 10., value=1, label='Repetition Penalty')
length_penalty = gr.Slider(0, 5, value=0, label='Length Penalty')
# num_beams = gr.Slider(1, 20, value=1, step=1, label='Number of Beams')
do_sample = gr.Checkbox(label='With sampling')
with gr.Accordion(label='Sampling Parameters'):
with gr.Row():
temperature = gr.Slider(0., 5., value=0.6, label='Temperature')
top_k = gr.Slider(1, 1000, value=50, step=1, label='top k')
top_p = gr.Slider(0., 1., value=0.95, label='top p')
# with gr.Group():
# with gr.Row():
# for txt in model_info.keys():
# btn = gr.Button(txt)
# model_btns.append(btn)
# for btn in model_btns:
# btn.click(reset_new_model, [global_state])
# event listeners
for i, btn in enumerate(tokens_container):
btn.click(partial(run_interpretation, i=i), [global_state, interpretation_prompt,
num_tokens, do_sample, temperature,
top_k, top_p, repetition_penalty, length_penalty,
use_gpu
], [progress_dummy, *interpretation_bubbles])
original_prompt_btn.click(get_hidden_states,
[original_prompt_raw],
[progress_dummy, global_state, *tokens_container])
demo.launch() |