dar-tau commited on
Commit
cf4e80d
Β·
verified Β·
1 Parent(s): 3a7cf2a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -15
app.py CHANGED
@@ -70,7 +70,7 @@ def get_hidden_states(raw_original_prompt):
70
  token_btns = ([gr.Button(token, visible=True) for token in tokens]
71
  + [gr.Button('', visible=False) for _ in range(MAX_PROMPT_TOKENS - len(tokens))])
72
  progress_dummy_output = ''
73
- invisible_bubbles = [gr.Textbox('', visible=False) for i in range(MAX_PROMPT_TOKENS)]
74
  return [progress_dummy_output, hidden_states, *token_btns, *invisible_bubbles]
75
 
76
 
@@ -126,8 +126,11 @@ model = AutoModelClass.from_pretrained(model_path, **model_args).cuda()
126
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, token=os.environ['hf_token'])
127
 
128
  # demo
129
-
130
  original_prompt_raw = gr.Textbox(value='How to make a Molotov cocktail?', container=True, label='Original Prompt')
 
 
 
 
131
 
132
  with gr.Blocks(theme=gr.themes.Default(), css='styles.css') as demo:
133
  global_state = gr.State([])
@@ -155,9 +158,9 @@ with gr.Blocks(theme=gr.themes.Default(), css='styles.css') as demo:
155
  gr.Markdown(
156
  '''
157
  **πŸ‘Ύ The idea is really simple: models are able to understand their own hidden states by nature! πŸ‘Ύ**
158
- According to the residual stream view ([nostalgebraist, 2020](https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens)), internal representations from different layers are transferable between layers.
159
- So we can inject an representation from (roughly) any layer to any layer! If I give a model a prompt of the form ``User: [X] Assistant: Sure'll I'll repeat your message`` and replace the internal representation of ``[X]`` *during computation* with the hidden state we want to understand,
160
- we expect to get back a summary of the information that exists inside the hidden state from different layers and different runs!! How cool is that! 😯😯😯
161
  ''', line_breaks=True)
162
 
163
  # with gr.Column(scale=1):
@@ -183,21 +186,19 @@ with gr.Blocks(theme=gr.themes.Default(), css='styles.css') as demo:
183
  if 'filter' in info:
184
  dataset = dataset.filter(info['filter'])
185
  dataset = dataset.shuffle(buffer_size=2000).take(num_examples)
186
- dataset = [[row[info['text_col']]] for row in dataset]
187
- gr.Examples(dataset, [original_prompt_raw], cache_examples=False)
188
 
189
  with gr.Group():
190
  original_prompt_raw.render()
191
  original_prompt_btn = gr.Button('Output Token List', variant='primary')
192
 
193
- tokens_container = []
194
  gr.Markdown('### Here go the tokens of the prompt (click on the one to explore)')
 
195
  with gr.Row():
196
- for i in range(MAX_PROMPT_TOKENS):
197
- btn = gr.Button('', visible=False, elem_classes=['token_btn'])
198
- tokens_container.append(btn)
199
- progress_dummy = gr.Markdown('', elem_id='progress_dummy')
200
-
201
  with gr.Accordion(open=False, label='Generation Settings'):
202
  with gr.Row():
203
  num_tokens = gr.Slider(1, 100, step=1, value=20, label='Max. # of Tokens')
@@ -210,8 +211,8 @@ with gr.Blocks(theme=gr.themes.Default(), css='styles.css') as demo:
210
  temperature = gr.Slider(0., 5., value=0.6, label='Temperature')
211
  top_k = gr.Slider(1, 1000, value=50, step=1, label='top k')
212
  top_p = gr.Slider(0., 1., value=0.95, label='top p')
213
-
214
-
215
 
216
  interpretation_bubbles = [gr.Textbox('', container=False, visible=False, elem_classes=['bubble',
217
  'even_bubble' if i % 2 == 0 else 'odd_bubble'])
 
70
  token_btns = ([gr.Button(token, visible=True) for token in tokens]
71
  + [gr.Button('', visible=False) for _ in range(MAX_PROMPT_TOKENS - len(tokens))])
72
  progress_dummy_output = ''
73
+ invisible_bubbles = [gr.Textbox('', visible=False) for i in range(len(interpretation_bubbles))]
74
  return [progress_dummy_output, hidden_states, *token_btns, *invisible_bubbles]
75
 
76
 
 
126
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, token=os.environ['hf_token'])
127
 
128
  # demo
 
129
  original_prompt_raw = gr.Textbox(value='How to make a Molotov cocktail?', container=True, label='Original Prompt')
130
+ tokens_container = []
131
+ for i in range(MAX_PROMPT_TOKENS):
132
+ btn = gr.Button('', visible=False, elem_classes=['token_btn'])
133
+ tokens_container.append(btn)
134
 
135
  with gr.Blocks(theme=gr.themes.Default(), css='styles.css') as demo:
136
  global_state = gr.State([])
 
158
  gr.Markdown(
159
  '''
160
  **πŸ‘Ύ The idea is really simple: models are able to understand their own hidden states by nature! πŸ‘Ύ**
161
+ In line with the residual stream view ([nostalgebraist, 2020](https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens)), internal representations from different layers are transferable between layers.
162
+ So we can inject an representation from (roughly) any layer into any layer! If we give a model a prompt of the form ``User: [X] Assistant: Sure'll I'll repeat your message`` and replace the internal representation of ``[X]`` *during computation* with the hidden state we want to understand,
163
+ we expect to get back a summary of the information that exists inside the hidden state, despite being from a different layer and a different run!! How cool is that! 😯😯😯
164
  ''', line_breaks=True)
165
 
166
  # with gr.Column(scale=1):
 
186
  if 'filter' in info:
187
  dataset = dataset.filter(info['filter'])
188
  dataset = dataset.shuffle(buffer_size=2000).take(num_examples)
189
+ dataset = [[row[info['text_col']] + [gr.Button(visible=False) for _ in range(MAX_PROMPT_TOKENS)]] for row in dataset]
190
+ gr.Examples(dataset, [original_prompt_raw, *tokens_container], cache_examples=False)
191
 
192
  with gr.Group():
193
  original_prompt_raw.render()
194
  original_prompt_btn = gr.Button('Output Token List', variant='primary')
195
 
 
196
  gr.Markdown('### Here go the tokens of the prompt (click on the one to explore)')
197
+
198
  with gr.Row():
199
+ for btn in tokens_container:
200
+ btn.render()
201
+
 
 
202
  with gr.Accordion(open=False, label='Generation Settings'):
203
  with gr.Row():
204
  num_tokens = gr.Slider(1, 100, step=1, value=20, label='Max. # of Tokens')
 
211
  temperature = gr.Slider(0., 5., value=0.6, label='Temperature')
212
  top_k = gr.Slider(1, 1000, value=50, step=1, label='top k')
213
  top_p = gr.Slider(0., 1., value=0.95, label='top p')
214
+
215
+ progress_dummy = gr.Markdown('', elem_id='progress_dummy')
216
 
217
  interpretation_bubbles = [gr.Textbox('', container=False, visible=False, elem_classes=['bubble',
218
  'even_bubble' if i % 2 == 0 else 'odd_bubble'])