Spaces:
Runtime error
Runtime error
File size: 12,549 Bytes
93ea3ba 25ed840 93ea3ba 25ed840 93ea3ba 25ed840 93ea3ba 25ed840 93ea3ba cea7b8e 25ed840 93ea3ba 25ed840 93ea3ba cea7b8e 93ea3ba 25ed840 cea7b8e 93ea3ba cea7b8e 93ea3ba 25ed840 93ea3ba cea7b8e 93ea3ba 25ed840 93ea3ba 25ed840 93ea3ba 25ed840 93ea3ba 25ed840 19dcfbf 25ed840 93ea3ba 25ed840 19dcfbf 25ed840 93ea3ba 25ed840 19dcfbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import re
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
from torch import nn
import torch
import torch.nn.functional as F
from transformers import AutoConfig, AutoTokenizer, AutoModel
import gc
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
from torch import nn
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModel
from transformers import AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, MaxLengthCriteria, StoppingCriteriaList
from transformers import DataCollatorWithPadding
from transformers import LogitsProcessor, LogitsProcessorList, LogitsWarper
from torch.utils.data import DataLoader
from datasets import load_dataset
from tqdm.auto import tqdm
from dataclasses import dataclass
from argparse import ArgumentParser
@dataclass
class ModelParameters:
K_heads: torch.Tensor
num_layers: int
d_int: int
num_heads: int
hidden_dim: int
head_size: int
V_heads: torch.Tensor = None
W_Q_heads: torch.Tensor = None
W_K_heads: torch.Tensor = None
W_V_heads: torch.Tensor = None
W_O_heads: torch.Tensor = None
emb: torch.Tensor = None
def extract_gpt_parameters(model, full=False):
num_layers = model.config.n_layer
num_heads = model.config.n_head
hidden_dim = model.config.n_embd
head_size = hidden_dim // num_heads
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_fc.weight").T
for j in range(num_layers)]).detach()
K_heads = K.reshape(num_layers, -1, hidden_dim)
d_int = K_heads.shape[1]
model_params = ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int,
hidden_dim=hidden_dim, head_size=head_size,
num_heads=num_heads)
if full:
emb = model.get_output_embeddings().weight.data.T
V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_proj.weight")
for j in range(num_layers)]).detach()
W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
for j in range(num_layers)]).detach().chunk(3, dim=-1)
W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
for j in range(num_layers)]).detach()
model_params.V_heads = V.reshape(num_layers, -1, hidden_dim)
model_params.W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
model_params.W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.emb = emb
return model_params
def extract_gpt_j_parameters(model, full=False):
num_layers = model.config.n_layer
num_heads = model.config.n_head
hidden_dim = model.config.n_embd
head_size = hidden_dim // num_heads
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.fc_in.weight")
for j in range(num_layers)]).detach()
K_heads = K.reshape(num_layers, -1, hidden_dim)
d_int = K_heads.shape[1]
model_params = ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int,
hidden_dim=hidden_dim, head_size=head_size,
num_heads=num_heads)
if full:
raise NotImplementedError
emb = model.get_output_embeddings().weight.data.T
V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_out.weight").T
for j in range(num_layers)]).detach()
# W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
# for j in range(num_layers)]).detach().chunk(3, dim=-1)
# W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
# for j in range(num_layers)]).detach()
model_params.V_heads = V.reshape(num_layers, -1, hidden_dim)
# model_params.W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
# model_params.W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
# model_params.W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
# model_params.W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.emb = emb
return model_params
def encode(token, tokenizer):
assert (type(token) == str)
encoded = tokenizer.encode(token)
assert (len(encoded) == 1)
return encoded[0]
def read_and_go(path):
with open(path, 'r') as f:
return f.read()
def extend_model_and_tokenizer(model, model_params, tokenizer, min_layer=0,
max_layer=None):
if max_layer is None:
max_layer = len(model_params.K_heads)-1
relevant_neurons = model_params.K_heads[min_layer:max_layer+1]
num_regular_tokens = len(tokenizer)
new_tokens = [f" <param_{layer}_{dim}>" for layer in range(min_layer, max_layer+1)
for dim in range(relevant_neurons.shape[1])]
tokenizer_extended = deepcopy(tokenizer)
model_extended = deepcopy(model)
tokenizer_extended.add_tokens(new_tokens)
model_extended.resize_token_embeddings(len(tokenizer_extended))
model_extended.transformer.wte.weight.data[-len(new_tokens):] = relevant_neurons.flatten(0, -2)
return model_extended, tokenizer_extended
# logit processors
class NeuronTokenBan(LogitsWarper):
def __init__(self, num_non_neuron_tokens, ban_penalty=-np.inf):
self.ban_penalty = ban_penalty
self.num_non_neuron_tokens = num_non_neuron_tokens
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.FloatTensor:
scores[:, self.num_non_neuron_tokens:] = self.ban_penalty
return scores
class ParamListStructureEnforcer(LogitsProcessor):
def __init__(self, tokenizer, num_regular_tokens):
self.tokenizer = tokenizer
self.num_regular_tokens = num_regular_tokens
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.FloatTensor:
last_input_id = input_ids[0, -1]
tokenizer = self.tokenizer
num_regular_tokens = self.num_regular_tokens
comma_id = encode(',', tokenizer)
eos_score, comma_score = deepcopy(scores[:, tokenizer.eos_token_id]), deepcopy(scores[:, comma_id])
if last_input_id >= num_regular_tokens:
scores[:] = -np.inf
scores[:, comma_id] = comma_score
else:
scores[:, :num_regular_tokens] = -np.inf
scores[:, tokenizer.eos_token_id] = eos_score
return scores
# speaking probe
def _preprocess_prompt(model_params, prompt):
K_heads = model_params.K_heads
prompt = re.sub(r'([^ ]|\A)(<neuron\d*>|<param_\d+_\d+>)', lambda m: f'{m.group(1)} {m.group(2)}', prompt)
param_neuron_idxs = set([(int(a), int(b)) for a, b in re.findall(r' <param_(\d+)_(\d+)>', prompt)])
param_neuron_tokens = [f' <param_{a}_{b}>' for a, b in param_neuron_idxs]
param_neurons = [deepcopy(K_heads[a, b]) for a, b in param_neuron_idxs]
return prompt, param_neuron_tokens, param_neurons
def speaking_probe(model, model_params, tokenizer, prompt, *neurons,
num_generations=1, layer_range=None, bad_words_ids=[], output_neurons=False,
return_outputs=False, logits_processor=LogitsProcessorList([]), **kwargs):
num_non_neuron_tokens = len(tokenizer)
tokenizer_with_neurons = deepcopy(tokenizer)
# adding neurons to the tokenizer
neuron_tokens = [f" <neuron{i+1 if i > 0 else ''}>" for i in range(len(neurons))]
prompt, param_neuron_tokens, param_neurons = _preprocess_prompt(model_params, prompt)
neuron_tokens.extend(param_neuron_tokens)
neurons = neurons + tuple(param_neurons)
has_extra_neurons = len(neurons) > 0
if has_extra_neurons:
tokenizer_with_neurons.add_tokens(neuron_tokens)
model.resize_token_embeddings(len(tokenizer_with_neurons))
model.transformer.wte.weight.data[-len(neurons):] = torch.stack(neurons, dim=0)
logits_processor = deepcopy(logits_processor)
if not output_neurons:
logits_processor.append(NeuronTokenBan(num_non_neuron_tokens))
if layer_range is not None:
num_layers = model_params.num_layers
min_layer, max_layer = layer_range
bad_words_ids = deepcopy(bad_words_ids)
bad_words_ids.extend([[encode(f" <param_{i}_{j}>", tokenizer)]
for j in range(model_params.d_int)
for i in [*range(min_layer), *range(max_layer+1, num_layers)]])
if len(bad_words_ids) == 0:
bad_words_ids = None
input_ids = tokenizer_with_neurons.encode(prompt, return_tensors='pt').to(model.device)
input_ids = torch.cat([deepcopy(input_ids) for _ in range(num_generations)], dim=0)
outputs = model.generate(input_ids, pad_token_id=model.config.eos_token_id,
logits_processor=logits_processor,
bad_words_ids=bad_words_ids,
return_dict_in_generate=True,
**kwargs)
decoded = tokenizer_with_neurons.batch_decode(outputs.sequences, skip_special_tokens=True)
# TODO: add `finally` statement
if has_extra_neurons:
model.resize_token_embeddings(num_non_neuron_tokens)
model.transformer.wte.weight.data = model.transformer.wte.weight.data[:num_non_neuron_tokens]
if return_outputs:
return decoded, outputs
else:
return decoded
# main
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('-p', '--prompt', type=str, default=None)
parser.add_argument('--model', type=str, default='gpt2-large')
parser.add_argument('--neuron', type=str, default=None)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--prompt_file', type=str, default=None)
parser.add_argument('--no_sample', action='store_true')
parser.add_argument('--num_beams', type=int, default=3)
parser.add_argument('--num_generations', type=int, default=1)
parser.add_argument('--min_length', type=int, default=20)
parser.add_argument('--top_p', type=float, default=None)
parser.add_argument('--top_k', type=int, default=None)
parser.add_argument('--max_length', type=int, default=100)
parser.add_argument('--max_new_tokens', type=int, default=None)
parser.add_argument('--repetition_penalty', type=float, default=2.)
parser.add_argument('--temperature', type=float, default=1.)
args = parser.parse_args()
# TODO: first make them mutually exclusive
if args.max_new_tokens is not None:
args.max_length = None
print("loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(args.model)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(args.model)
model_params = extract_gpt_parameters(model)
prompt = args.prompt or read_and_go(args.prompt_file)
device = args.device
model = model.to(device)
i1, i2 = map(lambda x: int(x.strip()), args.neuron.split(','))
neuron = model_params.K_heads[i1, i2]
neurons = [neuron]
print(prompt)
decoded = speaking_probe(model, model_params, tokenizer, prompt, *neurons,
num_generations=args.num_generations,
repetition_penalty=args.repetition_penalty,
num_beams=args.num_beams, top_p=args.top_p, top_k=args.top_k,
temperature=args.temperature,
min_length=args.min_length, do_sample=not args.no_sample,
max_length=args.max_length, max_new_tokens=args.max_new_tokens)
for i in range(len(decoded)):
print("\n\ngenerate:", decoded[i])
|