File size: 5,623 Bytes
db28818
585854e
42eb874
83a0630
585854e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
from transformers import AutoModel
from PIL import Image
import torch
import numpy as np
import urllib.request

# Initialize session state for memory if not already
if "memory" not in st.session_state:
    st.session_state.memory = {"characters": {}, "transcript": ""}

@st.cache_resource
def load_model():
    model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    return model

@st.cache_data
def read_image_as_np_array(image_path):
    if "http" in image_path:
        image = Image.open(urllib.request.urlopen(image_path)).convert("L").convert("RGB")
    else:
        image = Image.open(image_path).convert("L").convert("RGB")
    image = np.array(image)
    return image

@st.cache_data
def predict_detections_and_associations(
        image_path,
        character_detection_threshold,
        panel_detection_threshold,
        text_detection_threshold,
        character_character_matching_threshold,
        text_character_matching_threshold,
):
    image = read_image_as_np_array(image_path)
    with torch.no_grad():
        result = model.predict_detections_and_associations(
            [image],
            character_detection_threshold=character_detection_threshold,
            panel_detection_threshold=panel_detection_threshold,
            text_detection_threshold=text_detection_threshold,
            character_character_matching_threshold=character_character_matching_threshold,
            text_character_matching_threshold=text_character_matching_threshold,
            )[0]
    return result

@st.cache_data
def predict_ocr(
    image_path,
    character_detection_threshold,
    panel_detection_threshold,
    text_detection_threshold,
    character_character_matching_threshold,
    text_character_matching_threshold,
):
    if not generate_transcript:
        return
    image = read_image_as_np_array(image_path)
    result = predict_detections_and_associations(
        image_path,
        character_detection_threshold,
        panel_detection_threshold,
        text_detection_threshold,
        character_character_matching_threshold,
        text_character_matching_threshold,
    )
    text_bboxes_for_all_images = [result["texts"]]
    with torch.no_grad():
        ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
    return ocr_results

def clear_memory():
    st.session_state.memory = {"characters": {}, "transcript": ""}
    st.write("Memory cleared.")

model = load_model()

# Display header and UI components
st.markdown("""    <style> ... styles here ... </style> """, unsafe_allow_html=True)
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])

# Memory control button
st.button("Clear Memory", on_click=clear_memory)

st.sidebar.markdown("**Mode**")
generate_detections_and_associations = st.sidebar.toggle("Generate detections and associations", True)
generate_transcript = st.sidebar.toggle("Generate transcript (slower)", False)

st.sidebar.markdown("**Hyperparameters**")
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01)
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)

if path_to_image is not None:
    image = read_image_as_np_array(path_to_image)
    st.markdown("**Prediction**")
    
    if generate_detections_and_associations or generate_transcript:
        result = predict_detections_and_associations(
            path_to_image,
            input_character_detection_threshold,
            input_panel_detection_threshold,
            input_text_detection_threshold,
            input_character_character_matching_threshold,
            input_text_character_matching_threshold,
        )

    if generate_transcript:
        ocr_results = predict_ocr(
            path_to_image,
            input_character_detection_threshold,
            input_panel_detection_threshold,
            input_text_detection_threshold,
            input_character_character_matching_threshold,
            input_text_character_matching_threshold,
        )
        
        # Append new characters and transcript to memory
        if generate_detections_and_associations:
            output = model.visualise_single_image_prediction(image, result)
            st.image(output)
            # Update character memory based on detected characters
            detected_characters = result.get("characters", {})
            st.session_state.memory["characters"].update(detected_characters)
        
        # Append the current transcript to the ongoing transcript in memory
        transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
        st.session_state.memory["transcript"] += transcript + "\n"

        # Display the cumulative transcript from memory
        st.text(st.session_state.memory["transcript"])

    elif generate_detections_and_associations:
        output = model.visualise_single_image_prediction(image, result)
        st.image(output)

    elif generate_transcript:
        # Display the cumulative transcript
        st.text(st.session_state.memory["transcript"])