daranaka's picture
Update app.py
4a78e11 verified
raw
history blame
5.6 kB
import streamlit as st
from transformers import AutoModel
from PIL import Image
import torch
import numpy as np
import urllib.request
memory = {}
@st.cache_resource
def load_model():
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
return model
@st.cache_data
def read_image_as_np_array(image_path):
if "http" in image_path:
image = Image.open(urllib.request.urlopen(image_path)).convert("L").convert("RGB")
else:
image = Image.open(image_path).convert("L").convert("RGB")
image = np.array(image)
return image
@st.cache_data
def predict_detections_and_associations(
image_path,
character_detection_threshold,
panel_detection_threshold,
text_detection_threshold,
character_character_matching_threshold,
text_character_matching_threshold,
):
image = read_image_as_np_array(image_path)
with torch.no_grad():
result = model.predict_detections_and_associations(
[image],
character_detection_threshold=character_detection_threshold,
panel_detection_threshold=panel_detection_threshold,
text_detection_threshold=text_detection_threshold,
character_character_matching_threshold=character_character_matching_threshold,
text_character_matching_threshold=text_character_matching_threshold,
)[0]
return result
@st.cache_data
def predict_ocr(
image_path,
character_detection_threshold,
panel_detection_threshold,
text_detection_threshold,
character_character_matching_threshold,
text_character_matching_threshold,
):
if not generate_transcript:
return
image = read_image_as_np_array(image_path)
result = predict_detections_and_associations(
path_to_image,
character_detection_threshold,
panel_detection_threshold,
text_detection_threshold,
character_character_matching_threshold,
text_character_matching_threshold,
)
text_bboxes_for_all_images = [result["texts"]]
with torch.no_grad():
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
return ocr_results
model = load_model()
# Add a button to clear memory
if st.button("Clear Memory"):
memory.clear()
# Streamlit UI elements
st.markdown("""
<style> .title-container { background-color: #0d1117; padding: 20px; border-radius: 10px; margin: 20px; }
.title { font-size: 2em; text-align: center; color: #fff; font-family: 'Comic Sans MS', cursive; text-transform: uppercase;
letter-spacing: 0.1em; padding: 0.5em 0 0.2em; background: 0 0; } .title span { background: -webkit-linear-gradient(45deg,
#6495ed, #4169e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .subheading { font-size: 1.5em;
text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .affil, .authors { font-size: 1em; text-align: center;
color: #ddd; font-family: 'Comic Sans MS', cursive; } .authors { padding-top: 1em; } </style>
<div class='title-container'> <div class='title'> The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer </div>
<div class='subheading'> Automatically Generating Transcriptions for Comics </div> <div class='authors'> Ragav Sachdeva and
Andrew Zisserman </div> <div class='affil'> University of Oxford </div> </div>""", unsafe_allow_html=True)
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
st.sidebar.markdown("**Mode**")
generate_detections_and_associations = st.sidebar.checkbox("Generate detections and associations", True)
generate_transcript = st.sidebar.checkbox("Generate transcript (slower)", False)
# Hyperparameter Sliders
st.sidebar.markdown("**Hyperparameters**")
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01)
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
# Main processing based on image input
if path_to_image is not None:
image = read_image_as_np_array(path_to_image)
st.markdown("**Prediction**")
# Run predictions based on checkbox selections
if generate_detections_and_associations:
result = predict_detections_and_associations(
path_to_image,
input_character_detection_threshold,
input_panel_detection_threshold,
input_text_detection_threshold,
input_character_character_matching_threshold,
input_text_character_matching_threshold,
)
output = model.visualise_single_image_prediction(image, result)
st.image(output)
if generate_transcript:
ocr_results = predict_ocr(
path_to_image,
input_character_detection_threshold,
input_panel_detection_threshold,
input_text_detection_threshold,
input_character_character_matching_threshold,
input_text_character_matching_threshold,
)
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
st.text(transcript)